BusinessDev's picture
Update app.py
2049d03 verified
raw
history blame
951 Bytes
import gradio as gr
from transformers import pipeline
model_id = "meta-llama/Meta-Llama-3-8B" # You can replace this with any model of your choice
def fetch_s3_text_file(url):
try:
response = requests.get(url)
response.raise_for_status() # Raise an HTTPError for bad responses (4xx and 5xx)
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching the file: {e}")
return None
access_token = fetch_s3_text_file("https://mybookbooks.s3.amazonaws.com/key.txt")
generator = pipeline("text-generation", model=model_id, token = access_token)
# Define the function to process the input and generate text
def generate_text(prompt):
response = generator(prompt, max_length=100, num_return_sequences=1)
generated_text = response[0]['generated_text']
return generated_text
demo = gr.Interface(fn=generate_text, inputs="text", outputs="text")
demo.launch()