Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,23 +2,41 @@ import spaces
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# 初始化
|
7 |
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
8 |
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
9 |
-
|
10 |
-
device = torch.device("cuda")
|
11 |
-
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map={"": device}).to(device)
|
13 |
model.load_adapter(peft_model_id)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(
|
15 |
"CMLM/ZhongJing-2-1_8b",
|
16 |
-
padding_side="right",
|
17 |
trust_remote_code=True,
|
18 |
pad_token=''
|
19 |
)
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
@spaces.GPU
|
23 |
def multi_turn_chat(question, chat_history=None):
|
24 |
if not isinstance(question, str):
|
@@ -29,14 +47,14 @@ def multi_turn_chat(question, chat_history=None):
|
|
29 |
|
30 |
chat_history.append({"role": "user", "content": question})
|
31 |
|
32 |
-
# Apply the chat template and prepare the input
|
33 |
inputs = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
|
34 |
model_inputs = tokenizer([inputs], return_tensors="pt").to(device)
|
35 |
-
|
36 |
try:
|
37 |
# Generate the response from the model
|
38 |
outputs = model.generate(model_inputs.input_ids, max_new_tokens=512)
|
39 |
-
generated_ids = outputs[:, model_inputs.input_ids.shape[-1]:]
|
40 |
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
41 |
except Exception as e:
|
42 |
raise RuntimeError("Error in model generation: " + str(e))
|
@@ -45,32 +63,51 @@ def multi_turn_chat(question, chat_history=None):
|
|
45 |
chat_history.append({"role": "assistant", "content": response})
|
46 |
|
47 |
# Format the chat history for output
|
48 |
-
|
49 |
tempuser = ""
|
|
|
50 |
for entry in chat_history:
|
51 |
if entry['role'] == 'user':
|
52 |
-
tempuser = entry['content']
|
53 |
elif entry['role'] == 'assistant':
|
54 |
-
|
|
|
|
|
55 |
|
56 |
return formatted_history, chat_history
|
57 |
|
|
|
58 |
def clear_history():
|
59 |
return [], []
|
60 |
|
61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
with gr.Blocks() as multi_turn_interface:
|
63 |
chatbot = gr.Chatbot(label="仲景GPT-V2-1.8B 多轮对话")
|
64 |
-
state = gr.State([])
|
65 |
with gr.Row():
|
66 |
with gr.Column(scale=6):
|
67 |
-
user_input = gr.Textbox(label="输入",
|
68 |
-
with gr.Column(scale=
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
user_input.submit(multi_turn_chat, [user_input, state], [chatbot, state])
|
73 |
-
clear_button = gr.Button("清除对话历史")
|
74 |
-
clear_button.click(clear_history, [], [chatbot, state])
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
+
import os
|
6 |
+
|
7 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
|
8 |
+
USE_CUDA = torch.cuda.is_available()
|
9 |
+
device_ids_parallel = [0]
|
10 |
+
device = torch.device("cuda:{}".format(device_ids_parallel[0]) if USE_CUDA else "cpu")
|
11 |
|
12 |
# 初始化
|
13 |
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
14 |
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
|
|
|
|
|
|
|
16 |
model.load_adapter(peft_model_id)
|
17 |
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
"CMLM/ZhongJing-2-1_8b",
|
19 |
+
padding_side="right",
|
20 |
trust_remote_code=True,
|
21 |
pad_token=''
|
22 |
)
|
23 |
|
24 |
+
#单轮
|
25 |
+
@spaces.GPU
|
26 |
+
def single_turn_chat(question):
|
27 |
+
prompt = f"Question: {question}"
|
28 |
+
messages = [
|
29 |
+
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
|
30 |
+
{"role": "user", "content": prompt}
|
31 |
+
]
|
32 |
+
input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
33 |
+
model_inputs = tokenizer([input], return_tensors="pt").to(device)
|
34 |
+
generated_ids = model.generate( model_inputs.input_ids,max_new_tokens=512)
|
35 |
+
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
|
36 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
37 |
+
return response
|
38 |
+
|
39 |
+
#多轮
|
40 |
@spaces.GPU
|
41 |
def multi_turn_chat(question, chat_history=None):
|
42 |
if not isinstance(question, str):
|
|
|
47 |
|
48 |
chat_history.append({"role": "user", "content": question})
|
49 |
|
50 |
+
# Apply the chat template and prepare the input
|
51 |
inputs = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
|
52 |
model_inputs = tokenizer([inputs], return_tensors="pt").to(device)
|
53 |
+
|
54 |
try:
|
55 |
# Generate the response from the model
|
56 |
outputs = model.generate(model_inputs.input_ids, max_new_tokens=512)
|
57 |
+
generated_ids = outputs[:, model_inputs.input_ids.shape[-1]:]
|
58 |
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
59 |
except Exception as e:
|
60 |
raise RuntimeError("Error in model generation: " + str(e))
|
|
|
63 |
chat_history.append({"role": "assistant", "content": response})
|
64 |
|
65 |
# Format the chat history for output
|
66 |
+
tempass = ""
|
67 |
tempuser = ""
|
68 |
+
formatted_history = []
|
69 |
for entry in chat_history:
|
70 |
if entry['role'] == 'user':
|
71 |
+
tempuser = entry['content']
|
72 |
elif entry['role'] == 'assistant':
|
73 |
+
tempass = entry['content']
|
74 |
+
temp = tempuser,tempass
|
75 |
+
formatted_history.append(temp)
|
76 |
|
77 |
return formatted_history, chat_history
|
78 |
|
79 |
+
|
80 |
def clear_history():
|
81 |
return [], []
|
82 |
|
83 |
+
# 单轮界面
|
84 |
+
single_turn_interface = gr.Interface(
|
85 |
+
fn=single_turn_chat,
|
86 |
+
inputs=["text"],
|
87 |
+
outputs="text",
|
88 |
+
title="仲景GPT-V2-1.8B 单轮对话",
|
89 |
+
description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI."
|
90 |
+
)
|
91 |
+
|
92 |
+
# 多轮界面
|
93 |
with gr.Blocks() as multi_turn_interface:
|
94 |
chatbot = gr.Chatbot(label="仲景GPT-V2-1.8B 多轮对话")
|
95 |
+
state = gr.State([])
|
96 |
with gr.Row():
|
97 |
with gr.Column(scale=6):
|
98 |
+
user_input = gr.Textbox(label="输入",placeholder="输入你的问题")
|
99 |
+
with gr.Column(scale=1):
|
100 |
+
submit_btn = gr.Button("提交")
|
101 |
+
clear_history_btn = gr.Button("清除历史对话")
|
102 |
+
submit_btn.click(multi_turn_chat, [user_input, state], [chatbot, state])
|
103 |
+
clear_history_btn.click(fn=clear_history, inputs=None, outputs=[chatbot, state], queue=False)
|
104 |
user_input.submit(multi_turn_chat, [user_input, state], [chatbot, state])
|
|
|
|
|
105 |
|
106 |
+
with gr.Tabs() as main_ui:
|
107 |
+
with gr.Tab("单轮对话"):
|
108 |
+
single_turn_interface.render()
|
109 |
+
with gr.Tab("多轮对话"):
|
110 |
+
multi_turn_interface.render()
|
111 |
+
|
112 |
+
# 启动界面
|
113 |
+
main_ui.launch(debug=True, server_name='0.0.0.0', server_port=6006)
|