#!/usr/bin/env python from __future__ import annotations import argparse import pathlib import gradio as gr from dualstylegan import Model DESCRIPTION = '''# Portrait Style Transfer with DualStyleGAN overview ''' FOOTER = 'visitor badge' def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') return parser.parse_args() def get_style_image_url(style_name: str) -> str: base_url = 'https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images' filenames = { 'cartoon': 'cartoon_overview.jpg', 'caricature': 'caricature_overview.jpg', 'anime': 'anime_overview.jpg', 'arcane': 'Reconstruction_arcane_overview.jpg', 'comic': 'Reconstruction_comic_overview.jpg', 'pixar': 'Reconstruction_pixar_overview.jpg', 'slamdunk': 'Reconstruction_slamdunk_overview.jpg', } return f'{base_url}/{filenames[style_name]}' def get_style_image_markdown_text(style_name: str) -> str: url = get_style_image_url(style_name) return f'
style image
' def update_slider(choice: str) -> dict: max_vals = { 'cartoon': 316, 'caricature': 198, 'anime': 173, 'arcane': 99, 'comic': 100, 'pixar': 121, 'slamdunk': 119, } return gr.Slider.update(maximum=max_vals[choice]) def update_style_image(style_name: str) -> dict: text = get_style_image_markdown_text(style_name) return gr.Markdown.update(value=text) def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def set_example_styles(example: list) -> list[dict]: return [ gr.Radio.update(value=example[0]), gr.Slider.update(value=example[1]), ] def set_example_weights(example: list) -> list[dict]: return [ gr.Slider.update(value=example[0]), gr.Slider.update(value=example[1]), ] def main(): args = parse_args() model = Model(device=args.device) with gr.Blocks(theme=args.theme, css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Box(): gr.Markdown('''## Step 1 (Preprocess Input Image) - Drop an image containing a near-frontal face to the **Input Image**. - If there are multiple faces in the image, hit the Edit button in the upper right corner and crop the input image beforehand. - Hit the **Preprocess** button. - The final result will be based on this **Reconstructed Face**. So, if the reconstructed image is not satisfactory, you may want to change the input image. ''') with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='file') with gr.Row(): preprocess_button = gr.Button('Preprocess') with gr.Column(): with gr.Row(): aligned_face = gr.Image(label='Aligned Face', type='numpy', interactive=False) with gr.Column(): reconstructed_face = gr.Image(label='Reconstructed Face', type='numpy') instyle = gr.Variable() with gr.Row(): paths = sorted(pathlib.Path('images').glob('*.jpg')) example_images = gr.Dataset(components=[input_image], samples=[[path.as_posix()] for path in paths]) with gr.Box(): gr.Markdown('''## Step 2 (Select Style Image) - Select **Style Type**. - Select **Style Image Index** from the image table below. ''') with gr.Row(): with gr.Column(): style_type = gr.Radio(model.style_types, label='Style Type') text = get_style_image_markdown_text('cartoon') style_image = gr.Markdown(value=text) style_index = gr.Slider(0, 316, value=26, step=1, label='Style Image Index') with gr.Row(): example_styles = gr.Dataset( components=[style_type, style_index], samples=[ ['cartoon', 26], ['caricature', 65], ['arcane', 63], ['pixar', 80], ]) with gr.Box(): gr.Markdown('''## Step 3 (Generate Style Transferred Image) - Adjust **Structure Weight** and **Color Weight**. - These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image. - Hit the **Generate** button. ''') with gr.Row(): with gr.Column(): with gr.Row(): structure_weight = gr.Slider(0, 1, value=0.6, step=0.1, label='Structure Weight') with gr.Row(): color_weight = gr.Slider(0, 1, value=1, step=0.1, label='Color Weight') with gr.Row(): structure_only = gr.Checkbox(label='Structure Only') with gr.Row(): generate_button = gr.Button('Generate') with gr.Column(): result = gr.Image(label='Result') with gr.Row(): example_weights = gr.Dataset( components=[structure_weight, color_weight], samples=[ [0.6, 1.0], [0.3, 1.0], [0.0, 1.0], [1.0, 0.0], ]) gr.Markdown(FOOTER) preprocess_button.click(fn=model.detect_and_align_face, inputs=input_image, outputs=aligned_face) aligned_face.change(fn=model.reconstruct_face, inputs=aligned_face, outputs=[ reconstructed_face, instyle, ]) style_type.change(fn=update_slider, inputs=style_type, outputs=style_index) style_type.change(fn=update_style_image, inputs=style_type, outputs=style_image) generate_button.click(fn=model.generate, inputs=[ style_type, style_index, structure_weight, color_weight, structure_only, instyle, ], outputs=result) example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components) example_styles.click(fn=set_example_styles, inputs=example_styles, outputs=example_styles.components) example_weights.click(fn=set_example_weights, inputs=example_weights, outputs=example_weights.components) demo.launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()