import torch class HeadVQA(torch.nn.Module): def __init__(self, train_config): super().__init__() embedding_size = {'RN50': 1024, 'RN101': 512, 'RN50x4': 640, 'RN50x16': 768, 'RN50x64': 1024, 'ViT-B/32': 512, 'ViT-B/16': 512, 'ViT-L/14': 768, 'ViT-L/14@336px': 768} n_aux_classes = len(set(train_config.aux_mapping.values())) self.ln1 = torch.nn.LayerNorm(embedding_size[train_config.model]*2) self.dp1 = torch.nn.Dropout(0.5) self.fc1 = torch.nn.Linear(embedding_size[train_config.model] * 2, 512) self.ln2 = torch.nn.LayerNorm(512) self.dp2 = torch.nn.Dropout(0.5) self.fc2 = torch.nn.Linear(512, train_config.n_classes) self.fc_aux = torch.nn.Linear(512, n_aux_classes) self.fc_gate = torch.nn.Linear(n_aux_classes, train_config.n_classes) self.act_gate = torch.nn.Sigmoid() def forward(self, img_features, question_features): xc = torch.cat((img_features, question_features), dim=-1) x = self.ln1(xc) x = self.dp1(x) x = self.fc1(x) aux = self.fc_aux(x) gate = self.fc_gate(aux) gate = self.act_gate(gate) x = self.ln2(x) x = self.dp2(x) vqa = self.fc2(x) output = vqa * gate return output, aux class NetVQA(torch.nn.Module): def __init__(self, train_config): super().__init__() self.heads = torch.nn.ModuleList() if isinstance(train_config.folds, list): self.num_heads = len(train_config.folds) else: self.num_heads = train_config.folds for i in range(self.num_heads): self.heads.append(HeadVQA(train_config)) def forward(self, img_features, question_features): output = [] output_aux = [] for head in self.heads: logits, logits_aux = head(img_features, question_features) probs = logits.softmax(-1) probs_aux = logits_aux.softmax(-1) output.append(probs) output_aux.append(probs_aux) output = torch.stack(output, dim=-1).mean(-1) output_aux = torch.stack(output_aux, dim=-1).mean(-1) return output, output_aux def merge_vqa(train_config): # Initialize model model = NetVQA(train_config) for fold in train_config.folds: print("load weights from fold {} into head {}".format(fold, fold)) checkpoint_path = "{}/{}/fold_{}".format(train_config.model_path, train_config.model, fold) if train_config.crossvalidation: # load best checkpoint model_state_dict = torch.load('{}/weights_best.pth'.format(checkpoint_path)) else: # load checkpoint on train end model_state_dict = torch.load('{}/weights_end.pth'.format(checkpoint_path)) model.heads[fold].load_state_dict(model_state_dict, strict=True) checkpoint_path = "{}/{}/weights_merged.pth".format(train_config.model_path, train_config.model) print("Saving weights of merged model:", checkpoint_path) torch.save(model.state_dict(), checkpoint_path) return model