File size: 7,840 Bytes
2fafc55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad7aaa6
 
 
eb1d5d5
ad7aaa6
2fafc55
 
ad7aaa6
 
 
2fafc55
 
ad7aaa6
 
 
 
eb1d5d5
ad7aaa6
 
2fafc55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import pathlib
import tempfile
from collections import OrderedDict
from typing import Tuple, Union
import logging
import os

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn

from timm.models.layers import DropPath, trunc_normal_

from .image_encoder import build_image_encoder
from .text_encoder import build_text_encoder
from .text_encoder import build_tokenizer
from .templates import DEFAULT_TEMPLATES

logger = logging.getLogger(__name__)


class UniCLModel(nn.Module):
    def __init__(self, config: dict,):
        super().__init__()

        self.conf_lang_encoder = config['MODEL']['TEXT_ENCODER']
        self.tokenizer = build_tokenizer(self.conf_lang_encoder)

        self.text_encoder = build_text_encoder(self.conf_lang_encoder, self.tokenizer, config['VERBOSE'])

        dim_projection = config['MODEL']['DIM_PROJECTION']
        if hasattr(self.text_encoder, 'dim_out'):
            dim_out = self.text_encoder.dim_out
        else:
            with torch.no_grad():
                dim_out = self.text_encoder(
                    torch.zeros(1,1).type(torch.LongTensor)
                )['last_hidden_state'].size(2)

        self.text_projection = nn.Parameter(torch.empty(dim_out, dim_projection))

        self.conf_image_encoder = config['MODEL']['IMAGE_ENCODER']
        self.image_encoder = build_image_encoder(self.conf_image_encoder)

        self.image_projection = nn.Parameter(
            torch.empty(self.image_encoder.dim_out, dim_projection)
        )

        self.logit_scale = nn.Parameter(torch.ones([]))

        trunc_normal_(self.text_projection, std=.02)
        trunc_normal_(self.image_projection, std=.02)

    def _convert_old_weights(self, model_dict):
        model_dict_updated = {}
        for k, v in model_dict.items():
            if k.startswith('visual.'):
                model_dict_updated['image_encoder.'+k[7:]] = v
            elif k.startswith('text.'):
                model_dict_updated['lang_encoder.'+k[5:]] = v
            elif k == 'vision_projection':
                model_dict_updated['image_projection'] = v
            elif k == 'text_projection':
                model_dict_updated['text_projection'] = v
            else:
                model_dict_updated[k] = v

        return model_dict_updated

    def from_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
        if not os.path.isfile(pretrained):
            logger.warning(f'=> Pretrained model ({pretrained}) is not a file, skip init weight')
            return

        pretrained_dict = torch.load(pretrained, map_location='cpu')
        logger.info(f'=> Loading pretrained model {pretrained}')
        pretrained_dict = self._convert_old_weights(pretrained_dict)
        model_dict = self.state_dict()
        pretrained_dict = {
            k: v for k, v in pretrained_dict.items()
            if k in model_dict.keys()
        }
        need_init_state_dict = {}
        image_encoder_state_dict = {}
        for k, v in pretrained_dict.items():
            need_init = (
                k.split('.')[0] in pretrained_layers
                or pretrained_layers[0] == '*'
            )

            if need_init:
                if k.startswith('image_encoder.'):
                    image_encoder_state_dict[k] = v
                else:
                    if verbose:
                        logger.info(f'=> init {k} from {pretrained}')

                    need_init_state_dict[k] = v
        self.image_encoder.from_state_dict(image_encoder_state_dict, ['*'], verbose)
        self.load_state_dict(need_init_state_dict, strict=False)

    @torch.jit.ignore
    def no_weight_decay(self):
        no_weight_decay = {'logit_scale'}
        if hasattr(self.text_encoder, 'no_weight_decay'):
            for k in self.text_encoder.no_weight_decay():
                no_weight_decay.add('lang_encoder.'+k)

        if hasattr(self.image_encoder, 'no_weight_decay'):
            for k in self.image_encoder.no_weight_decay():
                no_weight_decay.add('image_encoder.'+k)

        return no_weight_decay

    @property
    def dtype(self):
        return self.logit_scale.dtype

    def get_imnet_embeddings(self):
        templates = IMAGENET_DEFAULT_TEMPLATES[:1]
        clss_embeddings = []
        for clss in IMAGENET_CLASSES:
            txts = [template.format(clss) for template in templates]
            
            tokens = self.tokenizer(
                txts, padding='max_length', truncation=True, max_length=77, return_tensors='pt'
            )                
            tokens = {key:(val.cuda() if next(self.parameters()).is_cuda else val) for key,val in tokens.items()}

            clss_embedding = self.encode_text(tokens)
            clss_embedding = clss_embedding.mean(dim=0)
            clss_embedding /= clss_embedding.norm()
            clss_embeddings.append(clss_embedding)
        imnet_text_embeddings = torch.stack(clss_embeddings, dim=0)
        return imnet_text_embeddings

    def get_text_embeddings(self, texts):
        templates = DEFAULT_TEMPLATES[:1]
        clss_embeddings = []
        for clss in texts:
            txts = [template.format(clss) for template in templates]
            
            tokens = self.tokenizer(
                txts, padding='max_length', truncation=True, max_length=77, return_tensors='pt'
            )                
            tokens = {key:(val.cuda() if next(self.parameters()).is_cuda else val) for key,val in tokens.items()}

            clss_embedding = self.encode_text(tokens)
            clss_embedding = clss_embedding.mean(dim=0)
            clss_embedding /= clss_embedding.norm()
            clss_embeddings.append(clss_embedding)
        imnet_text_embeddings = torch.stack(clss_embeddings, dim=0)
        return imnet_text_embeddings

    def encode_image(self, image, norm=True, output_map=False):
        x = self.image_encoder.forward_features(image, output_map=output_map)
        if output_map:
            x, x_map, H, W = x

        x = x @ self.image_projection

        if output_map:
            x_map = self.image_projection.unsqueeze(0).transpose(1, 2) @  x_map

        if norm:
            x = x / x.norm(dim=-1, keepdim=True)
            if output_map:
                x_map = x_map / x_map.norm(dim=1, keepdim=True)
        
        if output_map:
            return x, x_map, H, W
        else:
            return x

    def encode_text(self, text, norm=True):
        x = self.text_encoder(**text)
        x = x['last_hidden_state']

        if self.conf_lang_encoder['TOKENIZER'] == 'clip':
            x = x[torch.arange(x.size(0)), text['input_ids'].argmax(dim=-1)]
        else:
            x = x[:, 0]

        x = x @ self.text_projection

        if norm:
            x = x / x.norm(dim=-1, keepdim=True)

        return x

    def forward(self, image, text):
        features_image = self.encode_image(image)
        features_text = self.encode_text(text)

        # cosine similarity as logits
        T = self.logit_scale.exp()

        return features_image, features_text, T


def build_unicl_model(config, **kwargs):
    model = UniCLModel(config)
    if config['MODEL']['PRETRAINED'] != '':
        pretrained_path = config['MODEL']['PRETRAINED']
        from ..Utils.Utils import is_valid_url, download_file
        if is_valid_url(pretrained_path):
            with tempfile.TemporaryDirectory() as tmp_path:
                file_local_path = pathlib.Path(tmp_path) / 'base_model.pt'
                download_file(pretrained_path, file_local_path)
                model.from_pretrained(str(file_local_path), config['MODEL']['PRETRAINED_LAYERS'], config['VERBOSE'])
        else:
            model.from_pretrained(pretrained_path, config['MODEL']['PRETRAINED_LAYERS'], config['VERBOSE'])

    return model