import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM import spaces import re from PIL import Image # Install the necessary packages import subprocess subprocess.run('pip install flash-attn einops --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).eval() processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True) TITLE = "# [Florence-2 SD3 Long Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner/)" DESCRIPTION = "[Florence-2 Base](https://huggingface.co/microsoft/Florence-2-base-ft) fine-tuned on Long SD3 Prompt and Image pairs. Check above link for datasets that are used for fine-tuning." def modify_caption(caption: str) -> str: """ Removes specific prefixes from captions if present, otherwise returns the original caption. Args: caption (str): A string containing a caption. Returns: str: The caption with the prefix removed if it was present, or the original caption. """ # Define the prefixes to remove prefix_substrings = [ ('captured from ', ''), ('captured at ', '') ] # Create a regex pattern to match any of the prefixes pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings} # Function to replace matched prefix with its corresponding replacement def replace_fn(match): return replacers[match.group(0).lower()] # Apply the regex to the caption modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) # If the caption was modified, return the modified version; otherwise, return the original return modified_caption if modified_caption != caption else caption @spaces.GPU def run_example(image): image = Image.fromarray(image) task_prompt = "" prompt = task_prompt + "Describe this image in great detail." # Ensure the image is in RGB mode if image.mode != "RGB": image = image.convert("RGB") inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) return modify_caption(parsed_answer[""]) css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown(TITLE) gr.Markdown(DESCRIPTION) with gr.Tab(label="Florence-2 SD3 Prompts"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") gr.Examples( [["image1.jpg"], ["image2.jpg"], ["image3.png"], ["image4.jpg"], ["image5.jpg"], ["image6.PNG"]], inputs = [input_img], outputs = [output_text], fn=run_example, label='Try captioning on below examples' ) submit_btn.click(run_example, [input_img], [output_text]) demo.launch(debug=True)