Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
app = FastAPI() | |
def greet_json(): | |
return {"Hello": "World!"} | |
async def say_hello(msg: str): | |
torch.random.manual_seed(0) | |
model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/Phi-3-mini-128k-instruct", | |
device_map="cpu", | |
torch_dtype="auto", | |
trust_remote_code=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct") | |
messages = [ | |
{"role": "system", "content": "You are a helpful AI assistant."}, | |
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, | |
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, | |
{"role": "user", "content": msg}, | |
] | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
) | |
generation_args = { | |
"max_new_tokens": 500, | |
"return_full_text": False, | |
"temperature": 0.0, | |
"do_sample": False, | |
} | |
output = pipe(messages, **generation_args) | |
return {"message": output[0]['generated_text']} |