test / app.py
Chengxb888's picture
Update app.py
1cd6700 verified
from fastapi import FastAPI, Form
from fastapi.responses import FileResponse
from typing import Annotated
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
app = FastAPI()
@app.get("/", response_class=FileResponse)
async def root():
return "home.html"
@app.post("/hello/")
def say_hello(msg: Annotated[str, Form()]):
print("model")
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM-1.7B-Instruct"
device = "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
messages = [{"role": "user", "content": msg}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
print(input_text)
input_ids = tokenizer(msg, return_tensors="pt").to("cpu")
print("output")
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=256, temperature=0.6, top_p=0.92, do_sample=True)
print("complete")
return {"message": tokenizer.decode(outputs[0])}