File size: 1,150 Bytes
3f25510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import torchvision
from torch import nn
def create_effnetb2_model(num_classes : int ,
                          seed : int=42):
  """
  Create an EffNetB2 feature extractor model and move it to the target device.
  Args:
        num_classes (int, optional): number of classes in the classifier head.
            Defaults to 3.
        seed (int, optional): random seed value. Defaults to 42.

    Returns:
        model (torch.nn.Module): EffNetB2 feature extractor model.
        transforms (torchvision.transforms): EffNetB2 image transforms.
  """
  # Create EffNetB2 pretrained weights , transforms and model
  weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
  transforms = weights.transforms()
  model = torchvision.models.efficientnet_b2(weights)

  # Freeze all layers in base model
  for param in model.parameters():
    param.requires_grad = False
  # change classifier head with random seed for reproducilityù
  torch.manual_seed(seed)
  model.classifier = nn.Sequential(
      nn.Dropout(p=0.2, inplace=True),
      nn.Linear(in_features=1408, out_features=num_classes, bias=True)
  )
  return model, transforms