Spaces:
Sleeping
Sleeping
File size: 1,150 Bytes
3f25510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import torch
import torchvision
from torch import nn
def create_effnetb2_model(num_classes : int ,
seed : int=42):
"""
Create an EffNetB2 feature extractor model and move it to the target device.
Args:
num_classes (int, optional): number of classes in the classifier head.
Defaults to 3.
seed (int, optional): random seed value. Defaults to 42.
Returns:
model (torch.nn.Module): EffNetB2 feature extractor model.
transforms (torchvision.transforms): EffNetB2 image transforms.
"""
# Create EffNetB2 pretrained weights , transforms and model
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.efficientnet_b2(weights)
# Freeze all layers in base model
for param in model.parameters():
param.requires_grad = False
# change classifier head with random seed for reproducilityù
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.2, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes, bias=True)
)
return model, transforms
|