Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes : int , | |
seed : int=42): | |
""" | |
Create an EffNetB2 feature extractor model and move it to the target device. | |
Args: | |
num_classes (int, optional): number of classes in the classifier head. | |
Defaults to 3. | |
seed (int, optional): random seed value. Defaults to 42. | |
Returns: | |
model (torch.nn.Module): EffNetB2 feature extractor model. | |
transforms (torchvision.transforms): EffNetB2 image transforms. | |
""" | |
# Create EffNetB2 pretrained weights , transforms and model | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.efficientnet_b2(weights) | |
# Freeze all layers in base model | |
for param in model.parameters(): | |
param.requires_grad = False | |
# change classifier head with random seed for reproducilityù | |
torch.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.2, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes, bias=True) | |
) | |
return model, transforms | |