import torch import torchvision from torch import nn def create_effnetb2_model(num_classes : int , seed : int=42): """ Create an EffNetB2 feature extractor model and move it to the target device. Args: num_classes (int, optional): number of classes in the classifier head. Defaults to 3. seed (int, optional): random seed value. Defaults to 42. Returns: model (torch.nn.Module): EffNetB2 feature extractor model. transforms (torchvision.transforms): EffNetB2 image transforms. """ # Create EffNetB2 pretrained weights , transforms and model weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights) # Freeze all layers in base model for param in model.parameters(): param.requires_grad = False # change classifier head with random seed for reproducilityù torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.2, inplace=True), nn.Linear(in_features=1408, out_features=num_classes, bias=True) ) return model, transforms