Chintan-Shah
commited on
Commit
•
1ad8e33
1
Parent(s):
9bb690a
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
3 |
+
|
4 |
+
import time
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
bnb_config = BitsAndBytesConfig(
|
8 |
+
load_in_4bit=True,
|
9 |
+
bnb_4bit_quant_type="nf4",
|
10 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
11 |
+
)
|
12 |
+
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
"microsoft/Phi-3.5-mini-instruct",
|
15 |
+
torch_dtype=torch.bfloat16,
|
16 |
+
quantization_config=bnb_config,
|
17 |
+
trust_remote_code=True
|
18 |
+
)
|
19 |
+
model.load_adapter('./finetunedPEFTModel')
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained('./finetunedPEFTModel', trust_remote_code=True)
|
22 |
+
# tokenizer.pad_token = tokenizer.unk_token
|
23 |
+
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True)
|
24 |
+
|
25 |
+
|
26 |
+
def generateText(inputText="JULIET\n", num_tokens=200):
|
27 |
+
|
28 |
+
# pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=num_tokens)
|
29 |
+
# result = pipe(f'''[INST] {inputText} [/INST]''')
|
30 |
+
# print(result[0]['generated_text'])
|
31 |
+
|
32 |
+
prompt = "What is model regularization?"
|
33 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=num_tokens)
|
34 |
+
result = pipe(f'''{inputText}''')
|
35 |
+
|
36 |
+
return result[0]['generated_text']
|
37 |
+
|
38 |
+
|
39 |
+
title = "Fine tuned Phi3.5 instruct model on OpenAssist dataset using QLora"
|
40 |
+
description = "Fine tuned Phi3.5 instruct model on OpenAssist dataset using QLora"
|
41 |
+
examples = [
|
42 |
+
["How can I optimize my web page for online search so that it is on top?", 200],
|
43 |
+
["Can you give me an example of python script for Fibonacci series?", 200],
|
44 |
+
["Can you explain what is Contrastive Loss in Deep Learning?", 200],
|
45 |
+
["How are Sentence Transformers different from Huggingface Transformers?", 200],
|
46 |
+
]
|
47 |
+
|
48 |
+
demo = gr.Interface(
|
49 |
+
generateText,
|
50 |
+
inputs = [
|
51 |
+
gr.Textbox(label="Question that you want to ask"),
|
52 |
+
gr.Slider(100, 500, value = 200, step=100, label="Number of chars that you want in your output"),
|
53 |
+
],
|
54 |
+
outputs = [
|
55 |
+
gr.Text(),
|
56 |
+
],
|
57 |
+
title = title,
|
58 |
+
description = description,
|
59 |
+
examples = examples,
|
60 |
+
cache_examples=False
|
61 |
+
)
|
62 |
+
demo.launch()
|