{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "#|default_exp app.py\n", "#|export\n", "import gradio as gr\n", "from fastai.vision.all import *\n", "def is_cat(x): return x[0].isupper()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pathlib\n", "temp = pathlib.PosixPath\n", "pathlib.PosixPath = pathlib.WindowsPath" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#|export\n", "model_path = Path('model.pkl')\n", "learn = load_learner(model_path)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "('False', tensor(0), tensor([9.9983e-01, 1.6505e-04]))" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "im = PILImage.create('dog.jpg')\n", "im.thumbnail((192,192))\n", "learn.predict(im)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "#|export\n", "categories = ('dog', 'cat')\n", "\n", "def classify_image(img):\n", " pred,idx,probs = learn.predict(img)\n", " return dict(zip(categories, map(float,probs)))\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "{'dog': 0.9998348951339722, 'cat': 0.00016504859377164394}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "classify_image(im)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#|export\n", "gr.Interface(fn = classify_image, \n", " inputs=\"image\", \n", " outputs=\"label\", \n", " title = \"Dog or Cat\", \n", " description=\"Sample workflow\", \n", " examples = ['dog.jpg']\n", " ).launch()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "import nbdev\n", "nbdev.export.nb_export('Untitled-1.ipynb')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" } }, "nbformat": 4, "nbformat_minor": 2 }