{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#|default_exp app.py\n",
"#|export\n",
"import gradio as gr\n",
"from fastai.vision.all import *\n",
"def is_cat(x): return x[0].isupper()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pathlib\n",
"temp = pathlib.PosixPath\n",
"pathlib.PosixPath = pathlib.WindowsPath"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"model_path = Path('model.pkl')\n",
"learn = load_learner(model_path)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"('False', tensor(0), tensor([9.9983e-01, 1.6505e-04]))"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"im = PILImage.create('dog.jpg')\n",
"im.thumbnail((192,192))\n",
"learn.predict(im)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"categories = ('dog', 'cat')\n",
"\n",
"def classify_image(img):\n",
" pred,idx,probs = learn.predict(img)\n",
" return dict(zip(categories, map(float,probs)))\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"{'dog': 0.9998348951339722, 'cat': 0.00016504859377164394}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"classify_image(im)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#|export\n",
"gr.Interface(fn = classify_image, \n",
" inputs=\"image\", \n",
" outputs=\"label\", \n",
" title = \"Dog or Cat\", \n",
" description=\"Sample workflow\", \n",
" examples = ['dog.jpg']\n",
" ).launch()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"import nbdev\n",
"nbdev.export.nb_export('Untitled-1.ipynb')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}