File size: 7,487 Bytes
4b47b90
 
2b86939
4b47b90
2b86939
 
 
 
4b47b90
 
 
 
 
2b86939
4b47b90
2b86939
 
4b47b90
 
 
 
 
 
 
 
 
 
2b86939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b47b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b23de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import json
import os
import gradio as gr
import time
from pydantic import BaseModel, Field
from typing import Any, Optional, Dict, List
from huggingface_hub import InferenceClient
from langchain.llms.base import LLM
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
import os
from dotenv import load_dotenv
load_dotenv()

path_work = "."
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")

embeddings = HuggingFaceInstructEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2",  
    model_kwargs={"device": "cpu"}
    )

vectordb = Chroma(
    persist_directory = path_work + '/cromadb_llama2-papers',
    embedding_function=embeddings)

retriever = vectordb.as_retriever(search_kwargs={"k": 5})

class KwArgsModel(BaseModel):
    kwargs: Dict[str, Any] = Field(default_factory=dict)

class CustomInferenceClient(LLM, KwArgsModel):
    model_name: str
    inference_client: InferenceClient

    def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None):
        inference_client = InferenceClient(model=model_name, token=hf_token)
        super().__init__(
            model_name=model_name,
            hf_token=hf_token,
            kwargs=kwargs,
            inference_client=inference_client
        )

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None
    ) -> str:
        if stop is not None:
            raise ValueError("stop kwargs are not permitted.")
        response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True)
        response = ''.join(response_gen)  
        return response

    @property
    def _llm_type(self) -> str:
        return "custom"

    @property
    def _identifying_params(self) -> dict:
        return {"model_name": self.model_name}

kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}

model_list=[
    "meta-llama/Llama-2-13b-chat-hf",   
    "HuggingFaceH4/zephyr-7b-alpha",
    "meta-llama/Llama-2-70b-chat-hf",    
    "tiiuae/falcon-180B-chat"
]

qa_chain = None

def load_model(model_selected):
    global qa_chain
    model_name = model_selected
    llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs) 
    
    from langchain.chains import RetrievalQA
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True,
        verbose=True,
        )    
    qa_chain

load_model("meta-llama/Llama-2-70b-chat-hf")

def model_select(model_selected):
    load_model(model_selected)
    return f"๋ชจ๋ธ {model_selected} ๋กœ๋”ฉ ์™„๋ฃŒ."

def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,):
        
    temperature = float(temperature)
    if temperature < 1e-2: temperature = 1e-2
    top_p = float(top_p)
    
    llm_response = qa_chain(message)
    res_result = llm_response['result']

    res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
    response = f"{res_result}" + "\n\n" + "[๋‹ต๋ณ€ ๊ทผ๊ฑฐ ์†Œ์Šค ๋…ผ๋ฌธ (ctrl + click ํ•˜์„ธ์š”!)] :" + "\n" + f" \n {res_relevant_doc}"
    print("response: =====> \n", response, "\n\n")

    tokens = response.split('\n')
    token_list = []
    for idx, token in enumerate(tokens):
        token_dict = {"id": idx + 1, "text": token}
        token_list.append(token_dict)
    response = {"data": {"token": token_list}}
    response = json.dumps(response, indent=4)

    response = json.loads(response)  
    data_dict = response.get('data', {})
    token_list = data_dict.get('token', [])

    partial_message = ""
    for token_entry in token_list:
        if token_entry:  
            try:
                token_id = token_entry.get('id', None)
                token_text = token_entry.get('text', None)

                if token_text:  
                    for char in token_text:  
                        partial_message += char  
                        yield partial_message
                        time.sleep(0.01)
                else:
                    print(f"[[์›Œ๋‹]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
                    pass

            except KeyError as e:
                gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
                continue

title = "Llama-2 ๋ชจ๋ธ ๊ด€๋ จ ๋…ผ๋ฌธ Generative QA (with RAG) ์„œ๋น„์Šค (Llama-2-70b ๋ชจ๋ธ ๋“ฑ ํ™œ์šฉ)"
description = """Chat history ์œ ์ง€ ๋ณด๋‹ค๋Š” QA์— ์ถฉ์‹คํ•˜๋„๋ก ์ œ์ž‘๋˜์—ˆ์œผ๋ฏ€๋กœ Single turn์œผ๋กœ ํ™œ์šฉ ํ•˜์—ฌ ์ฃผ์„ธ์š”. Default๋กœ Llama-2 70b ๋ชจ๋ธ๋กœ ์„ค์ •๋˜์–ด ์žˆ์œผ๋‚˜ GPU ์„œ๋น„์Šค ํ•œ๋„ ์ดˆ๊ณผ๋กœ Error๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋‹ˆ ์–‘ํ•ด๋ถ€ํƒ๋“œ๋ฆฌ๋ฉฐ, ํ™”๋ฉด ํ•˜๋‹จ์˜ ๋ชจ๋ธ ๋ณ€๊ฒฝ/๋กœ๋”ฉํ•˜์‹œ์–ด ๋‹ค๋ฅธ ๋ชจ๋ธ๋กœ ๋ณ€๊ฒฝํ•˜์—ฌ ์‚ฌ์šฉ์„ ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค. (๋‹ค๋งŒ, Llama-2 70b๊ฐ€ ๊ฐ€์žฅ ์ •ํ™•ํ•˜์˜ค๋‹ˆ ์ฐธ๊ณ ํ•˜์—ฌ ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.) """
css = """.toast-wrap { display: none !important } """
examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["How much less accurate is using the SPP layer as features on the SPP (ZF-5) model compared to using the same model on the undistorted full image?"], ["tell me about method for human pose estimation based on DNNs"]]

def vote(data: gr.LikeData):
    if data.liked: print("You upvoted this response: " + data.value)
    else: print("You downvoted this response: " + data.value)

additional_inputs = [
    gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
    gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"),
    gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
    gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]

chatbot_stream = gr.Chatbot(avatar_images=(
    "https://drive.google.com/uc?id=18xKoNOHN15H_qmGhK__VKnGjKjirrquW",
    "https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv"
    ), bubble_full_width = False)

chat_interface_stream = gr.ChatInterface(
                predict,
                title=title, 
                description=description, 
                chatbot=chatbot_stream,
                css=css, 
                examples=examples, 
                 ) 

with gr.Blocks() as demo:
    with gr.Tab("์ŠคํŠธ๋ฆฌ๋ฐ"):
        chatbot_stream.like(vote, None, None)
        chat_interface_stream.render()
        with gr.Row():
            with gr.Column(scale=6):
                with gr.Row():
                    model_selector = gr.Dropdown(model_list, label="๋ชจ๋ธ ์„ ํƒ", value= "meta-llama/Llama-2-70b-chat-hf", scale=5)
                    submit_btn1 = gr.Button(value="๋ชจ๋ธ ๋กœ๋“œ", scale=1)
            with gr.Column(scale=4):
                model_status = gr.Textbox(value="", label="๋ชจ๋ธ ์ƒํƒœ")
                submit_btn1.click(model_select, inputs=[model_selector], outputs=[model_status])
        
demo.queue(concurrency_count=75, max_size=100).launch(debug=True,share=True)