Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,30 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from pydantic import BaseModel, Field
|
3 |
from typing import Any, Optional, Dict, List
|
4 |
from huggingface_hub import InferenceClient
|
5 |
from langchain.llms.base import LLM
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
7 |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
class KwArgsModel(BaseModel):
|
11 |
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
@@ -42,4 +61,124 @@ class CustomInferenceClient(LLM, KwArgsModel):
|
|
42 |
def _identifying_params(self) -> dict:
|
43 |
return {"model_name": self.model_name}
|
44 |
|
45 |
-
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
import gradio as gr
|
4 |
+
import time
|
5 |
from pydantic import BaseModel, Field
|
6 |
from typing import Any, Optional, Dict, List
|
7 |
from huggingface_hub import InferenceClient
|
8 |
from langchain.llms.base import LLM
|
9 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
10 |
+
from langchain.vectorstores import Chroma
|
11 |
+
import os
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
load_dotenv()
|
14 |
|
15 |
+
path_work = "."
|
16 |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
17 |
|
18 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
19 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
20 |
+
model_kwargs={"device": "cpu"}
|
21 |
+
)
|
22 |
+
|
23 |
+
vectordb = Chroma(
|
24 |
+
persist_directory = path_work + '/cromadb_llama2-papers',
|
25 |
+
embedding_function=embeddings)
|
26 |
+
|
27 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
28 |
|
29 |
class KwArgsModel(BaseModel):
|
30 |
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
61 |
def _identifying_params(self) -> dict:
|
62 |
return {"model_name": self.model_name}
|
63 |
|
64 |
+
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}
|
65 |
+
|
66 |
+
model_list=[
|
67 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
68 |
+
"HuggingFaceH4/zephyr-7b-alpha",
|
69 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
70 |
+
"tiiuae/falcon-180B-chat"
|
71 |
+
]
|
72 |
+
|
73 |
+
qa_chain = None
|
74 |
+
|
75 |
+
def load_model(model_selected):
|
76 |
+
global qa_chain
|
77 |
+
model_name = model_selected
|
78 |
+
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs)
|
79 |
+
|
80 |
+
from langchain.chains import RetrievalQA
|
81 |
+
qa_chain = RetrievalQA.from_chain_type(
|
82 |
+
llm=llm,
|
83 |
+
chain_type="stuff",
|
84 |
+
retriever=retriever,
|
85 |
+
return_source_documents=True,
|
86 |
+
verbose=True,
|
87 |
+
)
|
88 |
+
qa_chain
|
89 |
+
|
90 |
+
load_model("meta-llama/Llama-2-70b-chat-hf")
|
91 |
+
|
92 |
+
def model_select(model_selected):
|
93 |
+
load_model(model_selected)
|
94 |
+
return f"๋ชจ๋ธ {model_selected} ๋ก๋ฉ ์๋ฃ."
|
95 |
+
|
96 |
+
def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,):
|
97 |
+
|
98 |
+
temperature = float(temperature)
|
99 |
+
if temperature < 1e-2: temperature = 1e-2
|
100 |
+
top_p = float(top_p)
|
101 |
+
|
102 |
+
llm_response = qa_chain(message)
|
103 |
+
res_result = llm_response['result']
|
104 |
+
|
105 |
+
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
|
106 |
+
response = f"{res_result}" + "\n\n" + "[๋ต๋ณ ๊ทผ๊ฑฐ ์์ค ๋
ผ๋ฌธ (ctrl + click ํ์ธ์!)] :" + "\n" + f" \n {res_relevant_doc}"
|
107 |
+
print("response: =====> \n", response, "\n\n")
|
108 |
+
|
109 |
+
tokens = response.split('\n')
|
110 |
+
token_list = []
|
111 |
+
for idx, token in enumerate(tokens):
|
112 |
+
token_dict = {"id": idx + 1, "text": token}
|
113 |
+
token_list.append(token_dict)
|
114 |
+
response = {"data": {"token": token_list}}
|
115 |
+
response = json.dumps(response, indent=4)
|
116 |
+
|
117 |
+
response = json.loads(response)
|
118 |
+
data_dict = response.get('data', {})
|
119 |
+
token_list = data_dict.get('token', [])
|
120 |
+
|
121 |
+
partial_message = ""
|
122 |
+
for token_entry in token_list:
|
123 |
+
if token_entry:
|
124 |
+
try:
|
125 |
+
token_id = token_entry.get('id', None)
|
126 |
+
token_text = token_entry.get('text', None)
|
127 |
+
|
128 |
+
if token_text:
|
129 |
+
for char in token_text:
|
130 |
+
partial_message += char
|
131 |
+
yield partial_message
|
132 |
+
time.sleep(0.01)
|
133 |
+
else:
|
134 |
+
print(f"[[์๋]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
|
135 |
+
pass
|
136 |
+
|
137 |
+
except KeyError as e:
|
138 |
+
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
|
139 |
+
continue
|
140 |
+
|
141 |
+
title = "Llama-2 ๋ชจ๋ธ ๊ด๋ จ ๋
ผ๋ฌธ Generative QA (with RAG) ์๋น์ค (Llama-2-70b ๋ชจ๋ธ ๋ฑ ํ์ฉ)"
|
142 |
+
description = """Chat history ์ ์ง ๋ณด๋ค๋ QA์ ์ถฉ์คํ๋๋ก ์ ์๋์์ผ๋ฏ๋ก Single turn์ผ๋ก ํ์ฉ ํ์ฌ ์ฃผ์ธ์. Default๋ก Llama-2 70b ๋ชจ๋ธ๋ก ์ค์ ๋์ด ์์ผ๋ GPU ์๋น์ค ํ๋ ์ด๊ณผ๋ก Error๊ฐ ๋ฐ์ํ ์ ์์ผ๋ ์ํด๋ถํ๋๋ฆฌ๋ฉฐ, ํ๋ฉด ํ๋จ์ ๋ชจ๋ธ ๋ณ๊ฒฝ/๋ก๋ฉํ์์ด ๋ค๋ฅธ ๋ชจ๋ธ๋ก ๋ณ๊ฒฝํ์ฌ ์ฌ์ฉ์ ๋ถํ๋๋ฆฝ๋๋ค. (๋ค๋ง, Llama-2 70b๊ฐ ๊ฐ์ฅ ์ ํํ์ค๋ ์ฐธ๊ณ ํ์ฌ ์ฃผ์๊ธฐ ๋ฐ๋๋๋ค.) """
|
143 |
+
css = """.toast-wrap { display: none !important } """
|
144 |
+
examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["How much less accurate is using the SPP layer as features on the SPP (ZF-5) model compared to using the same model on the undistorted full image?"], ["tell me about method for human pose estimation based on DNNs"]]
|
145 |
+
|
146 |
+
def vote(data: gr.LikeData):
|
147 |
+
if data.liked: print("You upvoted this response: " + data.value)
|
148 |
+
else: print("You downvoted this response: " + data.value)
|
149 |
+
|
150 |
+
additional_inputs = [
|
151 |
+
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
152 |
+
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
153 |
+
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
154 |
+
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
|
155 |
+
]
|
156 |
+
|
157 |
+
chatbot_stream = gr.Chatbot(avatar_images=(
|
158 |
+
"https://drive.google.com/uc?id=18xKoNOHN15H_qmGhK__VKnGjKjirrquW",
|
159 |
+
"https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv"
|
160 |
+
), bubble_full_width = False)
|
161 |
+
|
162 |
+
chat_interface_stream = gr.ChatInterface(
|
163 |
+
predict,
|
164 |
+
title=title,
|
165 |
+
description=description,
|
166 |
+
chatbot=chatbot_stream,
|
167 |
+
css=css,
|
168 |
+
examples=examples,
|
169 |
+
)
|
170 |
+
|
171 |
+
with gr.Blocks() as demo:
|
172 |
+
with gr.Tab("์คํธ๋ฆฌ๋ฐ"):
|
173 |
+
chatbot_stream.like(vote, None, None)
|
174 |
+
chat_interface_stream.render()
|
175 |
+
with gr.Row():
|
176 |
+
with gr.Column(scale=6):
|
177 |
+
with gr.Row():
|
178 |
+
model_selector = gr.Dropdown(model_list, label="๋ชจ๋ธ ์ ํ", value= "meta-llama/Llama-2-70b-chat-hf", scale=5)
|
179 |
+
submit_btn1 = gr.Button(value="๋ชจ๋ธ ๋ก๋", scale=1)
|
180 |
+
with gr.Column(scale=4):
|
181 |
+
model_status = gr.Textbox(value="", label="๋ชจ๋ธ ์ํ")
|
182 |
+
submit_btn1.click(model_select, inputs=[model_selector], outputs=[model_status])
|
183 |
+
|
184 |
+
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)
|