Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,016 Bytes
0366b8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
from functools import partial
from abc import abstractmethod
import torch
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F
from lvdm.models.utils_diffusion import timestep_embedding
from lvdm.common import checkpoint
from lvdm.basics import (
zero_module,
conv_nd,
linear,
avg_pool_nd,
normalization
)
from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb, context=None, batch_size=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb, batch_size=batch_size)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context)
elif isinstance(layer, TemporalTransformer):
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
x = layer(x, context)
x = rearrange(x, 'b c f h w -> (b f) c h w')
else:
x = layer(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
else:
x = F.interpolate(x, scale_factor=2, mode='nearest')
if self.use_conv:
x = self.conv(x)
return x
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
:param use_temporal_conv: if True, use the temporal convolution.
:param use_image_dataset: if True, the temporal parameters will not be optimized.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
use_conv=False,
up=False,
down=False,
use_temporal_conv=False,
tempspatial_aware=False
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.use_temporal_conv = use_temporal_conv
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
if self.use_temporal_conv:
self.temopral_conv = TemporalConvBlock(
self.out_channels,
self.out_channels,
dropout=0.1,
spatial_aware=tempspatial_aware
)
def forward(self, x, emb, batch_size=None):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
input_tuple = (x, emb)
if batch_size:
forward_batchsize = partial(self._forward, batch_size=batch_size)
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
def _forward(self, x, emb, batch_size=None):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
h = self.skip_connection(x) + h
if self.use_temporal_conv and batch_size:
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
h = self.temopral_conv(h)
h = rearrange(h, 'b c t h w -> (b t) c h w')
return h
class TemporalConvBlock(nn.Module):
"""
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
"""
def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False):
super(TemporalConvBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
self.in_channels = in_channels
self.out_channels = out_channels
th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1)
th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0)
tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3)
tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1)
# conv layers
self.conv1 = nn.Sequential(
nn.GroupNorm(32, in_channels), nn.SiLU(),
nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape))
self.conv2 = nn.Sequential(
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
self.conv3 = nn.Sequential(
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape))
self.conv4 = nn.Sequential(
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
# zero out the last layer params,so the conv block is identity
nn.init.zeros_(self.conv4[-1].weight)
nn.init.zeros_(self.conv4[-1].bias)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
return identity + x
class UNetModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: in_channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0.0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
context_dim=None,
use_scale_shift_norm=False,
resblock_updown=False,
num_heads=-1,
num_head_channels=-1,
transformer_depth=1,
use_linear=False,
use_checkpoint=False,
temporal_conv=False,
tempspatial_aware=False,
temporal_attention=True,
use_relative_position=True,
use_causal_attention=False,
temporal_length=None,
use_fp16=False,
addition_attention=False,
temporal_selfatt_only=True,
image_cross_attention=False,
image_cross_attention_scale_learnable=False,
default_fs=4,
fs_condition=False,
):
super(UNetModel, self).__init__()
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.temporal_attention = temporal_attention
time_embed_dim = model_channels * 4
self.use_checkpoint = use_checkpoint
self.dtype = torch.float16 if use_fp16 else torch.float32
temporal_self_att_only = True
self.addition_attention = addition_attention
self.temporal_length = temporal_length
self.image_cross_attention = image_cross_attention
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
self.default_fs = default_fs
self.fs_condition = fs_condition
## Time embedding blocks
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if fs_condition:
self.fps_embedding = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
nn.init.zeros_(self.fps_embedding[-1].weight)
nn.init.zeros_(self.fps_embedding[-1].bias)
## Input Block
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
]
)
if self.addition_attention:
self.init_attn=TimestepEmbedSequential(
TemporalTransformer(
model_channels,
n_heads=8,
d_head=num_head_channels,
depth=transformer_depth,
context_dim=context_dim,
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
causal_attention=False, relative_position=use_relative_position,
temporal_length=temporal_length))
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(ch, time_embed_dim, dropout,
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False,
video_length=temporal_length, image_cross_attention=self.image_cross_attention,
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(ch, time_embed_dim, dropout,
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True
)
if resblock_updown
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers = [
ResBlock(ch, time_embed_dim, dropout,
dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
),
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable
)
]
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
layers.append(
ResBlock(ch, time_embed_dim, dropout,
dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
)
)
## Middle Block
self.middle_block = TimestepEmbedSequential(*layers)
## Output Block
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(ch + ich, time_embed_dim, dropout,
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
if level and i == num_res_blocks:
out_ch = ch
layers.append(
ResBlock(ch, time_embed_dim, dropout,
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
def forward(self, x, timesteps, context=None, features_adapter=None, fs=None, **kwargs):
b,_,t,_,_ = x.shape
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).type(x.dtype)
emb = self.time_embed(t_emb)
## repeat t times for context [(b t) 77 768] & time embedding
## check if we use per-frame image conditioning
_, l_context, _ = context.shape
if l_context == 77 + t*16: ## !!! HARD CODE here
context_text, context_img = context[:,:77,:], context[:,77:,:]
context_text = context_text.repeat_interleave(repeats=t, dim=0)
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
context = torch.cat([context_text, context_img], dim=1)
else:
context = context.repeat_interleave(repeats=t, dim=0)
emb = emb.repeat_interleave(repeats=t, dim=0)
## always in shape (b t) c h w, except for temporal layer
x = rearrange(x, 'b c t h w -> (b t) c h w')
## combine emb
if self.fs_condition:
if fs is None:
fs = torch.tensor(
[self.default_fs] * b, dtype=torch.long, device=x.device)
fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False).type(x.dtype)
fs_embed = self.fps_embedding(fs_emb)
fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0)
emb = emb + fs_embed
h = x.type(self.dtype)
adapter_idx = 0
hs = []
for id, module in enumerate(self.input_blocks):
h = module(h, emb, context=context, batch_size=b)
if id ==0 and self.addition_attention:
h = self.init_attn(h, emb, context=context, batch_size=b)
## plug-in adapter features
if ((id+1)%3 == 0) and features_adapter is not None:
h = h + features_adapter[adapter_idx]
adapter_idx += 1
hs.append(h)
if features_adapter is not None:
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
h = self.middle_block(h, emb, context=context, batch_size=b)
for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context=context, batch_size=b)
h = h.type(x.dtype)
y = self.out(h)
# reshape back to (b c t h w)
y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
return y |