Spaces:
Running
on
Zero
Running
on
Zero
#### https://github.com/Stability-AI/generative-models | |
from einops import rearrange, repeat | |
import logging | |
from typing import Any, Callable, Optional, Iterable, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from packaging import version | |
logpy = logging.getLogger(__name__) | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILABLE = True | |
except: | |
XFORMERS_IS_AVAILABLE = False | |
logpy.warning("no module 'xformers'. Processing without...") | |
from lvdm.modules.attention_svd import LinearAttention, MemoryEfficientCrossAttention | |
def nonlinearity(x): | |
# swish | |
return x * torch.sigmoid(x) | |
def Normalize(in_channels, num_groups=32): | |
return torch.nn.GroupNorm( | |
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
class ResnetBlock(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout, | |
temb_channels=512, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x, temb): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class LinAttnBlock(LinearAttention): | |
"""to match AttnBlock usage""" | |
def __init__(self, in_channels): | |
super().__init__(dim=in_channels, heads=1, dim_head=in_channels) | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def attention(self, h_: torch.Tensor) -> torch.Tensor: | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
b, c, h, w = q.shape | |
q, k, v = map( | |
lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v) | |
) | |
h_ = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v | |
) # scale is dim ** -0.5 per default | |
# compute attention | |
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) | |
def forward(self, x, **kwargs): | |
h_ = x | |
h_ = self.attention(h_) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class MemoryEfficientAttnBlock(nn.Module): | |
""" | |
Uses xformers efficient implementation, | |
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
Note: this is a single-head self-attention operation | |
""" | |
# | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.attention_op: Optional[Any] = None | |
def attention(self, h_: torch.Tensor) -> torch.Tensor: | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
B, C, H, W = q.shape | |
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v)) | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(B, t.shape[1], 1, C) | |
.permute(0, 2, 1, 3) | |
.reshape(B * 1, t.shape[1], C) | |
.contiguous(), | |
(q, k, v), | |
) | |
out = xformers.ops.memory_efficient_attention( | |
q, k, v, attn_bias=None, op=self.attention_op | |
) | |
out = ( | |
out.unsqueeze(0) | |
.reshape(B, 1, out.shape[1], C) | |
.permute(0, 2, 1, 3) | |
.reshape(B, out.shape[1], C) | |
) | |
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C) | |
def forward(self, x, **kwargs): | |
h_ = x | |
h_ = self.attention(h_) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): | |
def forward(self, x, context=None, mask=None, **unused_kwargs): | |
b, c, h, w = x.shape | |
x = rearrange(x, "b c h w -> b (h w) c") | |
out = super().forward(x, context=context, mask=mask) | |
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c) | |
return x + out | |
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): | |
assert attn_type in [ | |
"vanilla", | |
"vanilla-xformers", | |
"memory-efficient-cross-attn", | |
"linear", | |
"none", | |
"memory-efficient-cross-attn-fusion", | |
], f"attn_type {attn_type} unknown" | |
if ( | |
version.parse(torch.__version__) < version.parse("2.0.0") | |
and attn_type != "none" | |
): | |
assert XFORMERS_IS_AVAILABLE, ( | |
f"We do not support vanilla attention in {torch.__version__} anymore, " | |
f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'" | |
) | |
# attn_type = "vanilla-xformers" | |
logpy.info(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
if attn_type == "vanilla": | |
assert attn_kwargs is None | |
return AttnBlock(in_channels) | |
elif attn_type == "vanilla-xformers": | |
logpy.info( | |
f"building MemoryEfficientAttnBlock with {in_channels} in_channels..." | |
) | |
return MemoryEfficientAttnBlock(in_channels) | |
elif attn_type == "memory-efficient-cross-attn": | |
attn_kwargs["query_dim"] = in_channels | |
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) | |
elif attn_type == "memory-efficient-cross-attn-fusion": | |
attn_kwargs["query_dim"] = in_channels | |
return MemoryEfficientCrossAttentionWrapperFusion(**attn_kwargs) | |
elif attn_type == "none": | |
return nn.Identity(in_channels) | |
else: | |
return LinAttnBlock(in_channels) | |
class MemoryEfficientCrossAttentionWrapperFusion(MemoryEfficientCrossAttention): | |
# print('x.shape: ',x.shape, 'context.shape: ',context.shape) ##torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256]) | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0, **kwargs): | |
super().__init__(query_dim, context_dim, heads, dim_head, dropout, **kwargs) | |
self.norm = Normalize(query_dim) | |
nn.init.zeros_(self.to_out[0].weight) | |
nn.init.zeros_(self.to_out[0].bias) | |
def forward(self, x, context=None, mask=None): | |
if self.training: | |
return checkpoint(self._forward, x, context, mask, use_reentrant=False) | |
else: | |
return self._forward(x, context, mask) | |
def _forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
): | |
bt, c, h, w = x.shape | |
h_ = self.norm(x) | |
h_ = rearrange(h_, "b c h w -> b (h w) c") | |
q = self.to_q(h_) | |
b, c, l, h, w = context.shape | |
context = rearrange(context, "b c l h w -> (b l) (h w) c") | |
k = self.to_k(context) | |
v = self.to_v(context) | |
k = rearrange(k, "(b l) d c -> b l d c", l=l) | |
k = torch.cat([k[:, [0] * (bt//b)], k[:, [1]*(bt//b)]], dim=2) | |
k = rearrange(k, "b l d c -> (b l) d c") | |
v = rearrange(v, "(b l) d c -> b l d c", l=l) | |
v = torch.cat([v[:, [0] * (bt//b)], v[:, [1]*(bt//b)]], dim=2) | |
v = rearrange(v, "b l d c -> (b l) d c") | |
b, _, _ = q.shape ##actually bt | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
# actually compute the attention, what we cannot get enough of | |
if version.parse(xformers.__version__) >= version.parse("0.0.21"): | |
# NOTE: workaround for | |
# https://github.com/facebookresearch/xformers/issues/845 | |
max_bs = 32768 | |
N = q.shape[0] | |
n_batches = math.ceil(N / max_bs) | |
out = list() | |
for i_batch in range(n_batches): | |
batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs) | |
out.append( | |
xformers.ops.memory_efficient_attention( | |
q[batch], | |
k[batch], | |
v[batch], | |
attn_bias=None, | |
op=self.attention_op, | |
) | |
) | |
out = torch.cat(out, 0) | |
else: | |
out = xformers.ops.memory_efficient_attention( | |
q, k, v, attn_bias=None, op=self.attention_op | |
) | |
# TODO: Use this directly in the attention operation, as a bias | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
out = self.to_out(out) | |
out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c) | |
return x + out | |
class Combiner(nn.Module): | |
def __init__(self, ch) -> None: | |
super().__init__() | |
self.conv = nn.Conv2d(ch,ch,1,padding=0) | |
nn.init.zeros_(self.conv.weight) | |
nn.init.zeros_(self.conv.bias) | |
def forward(self, x, context): | |
if self.training: | |
return checkpoint(self._forward, x, context, use_reentrant=False) | |
else: | |
return self._forward(x, context) | |
def _forward(self, x, context): | |
## x: b c h w, context: b c 2 h w | |
b, c, l, h, w = context.shape | |
bt, c, h, w = x.shape | |
context = rearrange(context, "b c l h w -> (b l) c h w") | |
context = self.conv(context) | |
context = rearrange(context, "(b l) c h w -> b c l h w", l=l) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=bt//b) | |
x[:,:,0] = x[:,:,0] + context[:,:,0] | |
x[:,:,-1] = x[:,:,-1] + context[:,:,1] | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
return x | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
give_pre_end=False, | |
tanh_out=False, | |
use_linear_attn=False, | |
attn_type="vanilla-xformers", | |
attn_level=[2,3], | |
**ignorekwargs, | |
): | |
super().__init__() | |
if use_linear_attn: | |
attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
self.tanh_out = tanh_out | |
self.attn_level = attn_level | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,) + tuple(ch_mult) | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
logpy.info( | |
"Working with z of shape {} = {} dimensions.".format( | |
self.z_shape, np.prod(self.z_shape) | |
) | |
) | |
make_attn_cls = self._make_attn() | |
make_resblock_cls = self._make_resblock() | |
make_conv_cls = self._make_conv() | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d( | |
z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = make_resblock_cls( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type) | |
self.mid.block_2 = make_resblock_cls( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
self.attn_refinement = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append( | |
make_resblock_cls( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn_cls(block_in, attn_type=attn_type)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
if i_level in self.attn_level: | |
self.attn_refinement.insert(0, make_attn_cls(block_in, attn_type='memory-efficient-cross-attn-fusion', attn_kwargs={})) | |
else: | |
self.attn_refinement.insert(0, Combiner(block_in)) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.attn_refinement.append(Combiner(block_in)) | |
self.conv_out = make_conv_cls( | |
block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
) | |
def _make_attn(self) -> Callable: | |
return make_attn | |
def _make_resblock(self) -> Callable: | |
return ResnetBlock | |
def _make_conv(self) -> Callable: | |
return torch.nn.Conv2d | |
def get_last_layer(self, **kwargs): | |
return self.conv_out.weight | |
def forward(self, z, ref_context=None, **kwargs): | |
## ref_context: b c 2 h w, 2 means starting and ending frame | |
# assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb, **kwargs) | |
h = self.mid.attn_1(h, **kwargs) | |
h = self.mid.block_2(h, temb, **kwargs) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h, temb, **kwargs) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h, **kwargs) | |
if ref_context: | |
h = self.attn_refinement[i_level](x=h, context=ref_context[i_level]) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
if ref_context: | |
# print(h.shape, ref_context[i_level].shape) #torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256]) | |
h = self.attn_refinement[-1](x=h, context=ref_context[-1]) | |
h = self.conv_out(h, **kwargs) | |
if self.tanh_out: | |
h = torch.tanh(h) | |
return h | |
##### | |
from abc import abstractmethod | |
from lvdm.models.utils_diffusion import timestep_embedding | |
from torch.utils.checkpoint import checkpoint | |
from lvdm.basics import ( | |
zero_module, | |
conv_nd, | |
linear, | |
normalization, | |
) | |
from lvdm.modules.networks.openaimodel3d import Upsample, Downsample | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x: torch.Tensor, emb: torch.Tensor): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int, | |
dropout: float, | |
out_channels: Optional[int] = None, | |
use_conv: bool = False, | |
use_scale_shift_norm: bool = False, | |
dims: int = 2, | |
use_checkpoint: bool = False, | |
up: bool = False, | |
down: bool = False, | |
kernel_size: int = 3, | |
exchange_temb_dims: bool = False, | |
skip_t_emb: bool = False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.exchange_temb_dims = exchange_temb_dims | |
if isinstance(kernel_size, Iterable): | |
padding = [k // 2 for k in kernel_size] | |
else: | |
padding = kernel_size // 2 | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.skip_t_emb = skip_t_emb | |
self.emb_out_channels = ( | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels | |
) | |
if self.skip_t_emb: | |
# print(f"Skipping timestep embedding in {self.__class__.__name__}") | |
assert not self.use_scale_shift_norm | |
self.emb_layers = None | |
self.exchange_temb_dims = False | |
else: | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear( | |
emb_channels, | |
self.emb_out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd( | |
dims, | |
self.out_channels, | |
self.out_channels, | |
kernel_size, | |
padding=padding, | |
) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, kernel_size, padding=padding | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
if self.use_checkpoint: | |
return checkpoint(self._forward, x, emb, use_reentrant=False) | |
else: | |
return self._forward(x, emb) | |
def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
if self.skip_t_emb: | |
emb_out = torch.zeros_like(h) | |
else: | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
if self.exchange_temb_dims: | |
emb_out = rearrange(emb_out, "b t c ... -> b c t ...") | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
##### | |
##### | |
from lvdm.modules.attention_svd import * | |
class VideoTransformerBlock(nn.Module): | |
ATTENTION_MODES = { | |
"softmax": CrossAttention, | |
"softmax-xformers": MemoryEfficientCrossAttention, | |
} | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0.0, | |
context_dim=None, | |
gated_ff=True, | |
checkpoint=True, | |
timesteps=None, | |
ff_in=False, | |
inner_dim=None, | |
attn_mode="softmax", | |
disable_self_attn=False, | |
disable_temporal_crossattention=False, | |
switch_temporal_ca_to_sa=False, | |
): | |
super().__init__() | |
attn_cls = self.ATTENTION_MODES[attn_mode] | |
self.ff_in = ff_in or inner_dim is not None | |
if inner_dim is None: | |
inner_dim = dim | |
assert int(n_heads * d_head) == inner_dim | |
self.is_res = inner_dim == dim | |
if self.ff_in: | |
self.norm_in = nn.LayerNorm(dim) | |
self.ff_in = FeedForward( | |
dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff | |
) | |
self.timesteps = timesteps | |
self.disable_self_attn = disable_self_attn | |
if self.disable_self_attn: | |
self.attn1 = attn_cls( | |
query_dim=inner_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
context_dim=context_dim, | |
dropout=dropout, | |
) # is a cross-attention | |
else: | |
self.attn1 = attn_cls( | |
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is a self-attention | |
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff) | |
if disable_temporal_crossattention: | |
if switch_temporal_ca_to_sa: | |
raise ValueError | |
else: | |
self.attn2 = None | |
else: | |
self.norm2 = nn.LayerNorm(inner_dim) | |
if switch_temporal_ca_to_sa: | |
self.attn2 = attn_cls( | |
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is a self-attention | |
else: | |
self.attn2 = attn_cls( | |
query_dim=inner_dim, | |
context_dim=context_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(inner_dim) | |
self.norm3 = nn.LayerNorm(inner_dim) | |
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa | |
self.checkpoint = checkpoint | |
if self.checkpoint: | |
print(f"====>{self.__class__.__name__} is using checkpointing") | |
else: | |
print(f"====>{self.__class__.__name__} is NOT using checkpointing") | |
def forward( | |
self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None | |
) -> torch.Tensor: | |
if self.checkpoint: | |
return checkpoint(self._forward, x, context, timesteps, use_reentrant=False) | |
else: | |
return self._forward(x, context, timesteps=timesteps) | |
def _forward(self, x, context=None, timesteps=None): | |
assert self.timesteps or timesteps | |
assert not (self.timesteps and timesteps) or self.timesteps == timesteps | |
timesteps = self.timesteps or timesteps | |
B, S, C = x.shape | |
x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps) | |
if self.ff_in: | |
x_skip = x | |
x = self.ff_in(self.norm_in(x)) | |
if self.is_res: | |
x += x_skip | |
if self.disable_self_attn: | |
x = self.attn1(self.norm1(x), context=context) + x | |
else: | |
x = self.attn1(self.norm1(x)) + x | |
if self.attn2 is not None: | |
if self.switch_temporal_ca_to_sa: | |
x = self.attn2(self.norm2(x)) + x | |
else: | |
x = self.attn2(self.norm2(x), context=context) + x | |
x_skip = x | |
x = self.ff(self.norm3(x)) | |
if self.is_res: | |
x += x_skip | |
x = rearrange( | |
x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps | |
) | |
return x | |
def get_last_layer(self): | |
return self.ff.net[-1].weight | |
##### | |
##### | |
import functools | |
def partialclass(cls, *args, **kwargs): | |
class NewCls(cls): | |
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs) | |
return NewCls | |
###### | |
class VideoResBlock(ResnetBlock): | |
def __init__( | |
self, | |
out_channels, | |
*args, | |
dropout=0.0, | |
video_kernel_size=3, | |
alpha=0.0, | |
merge_strategy="learned", | |
**kwargs, | |
): | |
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) | |
if video_kernel_size is None: | |
video_kernel_size = [3, 1, 1] | |
self.time_stack = ResBlock( | |
channels=out_channels, | |
emb_channels=0, | |
dropout=dropout, | |
dims=3, | |
use_scale_shift_norm=False, | |
use_conv=False, | |
up=False, | |
down=False, | |
kernel_size=video_kernel_size, | |
use_checkpoint=True, | |
skip_t_emb=True, | |
) | |
self.merge_strategy = merge_strategy | |
if self.merge_strategy == "fixed": | |
self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
elif self.merge_strategy == "learned": | |
self.register_parameter( | |
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) | |
) | |
else: | |
raise ValueError(f"unknown merge strategy {self.merge_strategy}") | |
def get_alpha(self, bs): | |
if self.merge_strategy == "fixed": | |
return self.mix_factor | |
elif self.merge_strategy == "learned": | |
return torch.sigmoid(self.mix_factor) | |
else: | |
raise NotImplementedError() | |
def forward(self, x, temb, skip_video=False, timesteps=None): | |
if timesteps is None: | |
timesteps = self.timesteps | |
b, c, h, w = x.shape | |
x = super().forward(x, temb) | |
if not skip_video: | |
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) | |
x = self.time_stack(x, temb) | |
alpha = self.get_alpha(bs=b // timesteps) | |
x = alpha * x + (1.0 - alpha) * x_mix | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
return x | |
class AE3DConv(torch.nn.Conv2d): | |
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): | |
super().__init__(in_channels, out_channels, *args, **kwargs) | |
if isinstance(video_kernel_size, Iterable): | |
padding = [int(k // 2) for k in video_kernel_size] | |
else: | |
padding = int(video_kernel_size // 2) | |
self.time_mix_conv = torch.nn.Conv3d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=video_kernel_size, | |
padding=padding, | |
) | |
def forward(self, input, timesteps, skip_video=False): | |
x = super().forward(input) | |
if skip_video: | |
return x | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) | |
x = self.time_mix_conv(x) | |
return rearrange(x, "b c t h w -> (b t) c h w") | |
class VideoBlock(AttnBlock): | |
def __init__( | |
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned" | |
): | |
super().__init__(in_channels) | |
# no context, single headed, as in base class | |
self.time_mix_block = VideoTransformerBlock( | |
dim=in_channels, | |
n_heads=1, | |
d_head=in_channels, | |
checkpoint=True, | |
ff_in=True, | |
attn_mode="softmax", | |
) | |
time_embed_dim = self.in_channels * 4 | |
self.video_time_embed = torch.nn.Sequential( | |
torch.nn.Linear(self.in_channels, time_embed_dim), | |
torch.nn.SiLU(), | |
torch.nn.Linear(time_embed_dim, self.in_channels), | |
) | |
self.merge_strategy = merge_strategy | |
if self.merge_strategy == "fixed": | |
self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
elif self.merge_strategy == "learned": | |
self.register_parameter( | |
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) | |
) | |
else: | |
raise ValueError(f"unknown merge strategy {self.merge_strategy}") | |
def forward(self, x, timesteps, skip_video=False): | |
if skip_video: | |
return super().forward(x) | |
x_in = x | |
x = self.attention(x) | |
h, w = x.shape[2:] | |
x = rearrange(x, "b c h w -> b (h w) c") | |
x_mix = x | |
num_frames = torch.arange(timesteps, device=x.device) | |
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) | |
num_frames = rearrange(num_frames, "b t -> (b t)") | |
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False) | |
emb = self.video_time_embed(t_emb) # b, n_channels | |
emb = emb[:, None, :] | |
x_mix = x_mix + emb | |
alpha = self.get_alpha() | |
x_mix = self.time_mix_block(x_mix, timesteps=timesteps) | |
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge | |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) | |
x = self.proj_out(x) | |
return x_in + x | |
def get_alpha( | |
self, | |
): | |
if self.merge_strategy == "fixed": | |
return self.mix_factor | |
elif self.merge_strategy == "learned": | |
return torch.sigmoid(self.mix_factor) | |
else: | |
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}") | |
class MemoryEfficientVideoBlock(MemoryEfficientAttnBlock): | |
def __init__( | |
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned" | |
): | |
super().__init__(in_channels) | |
# no context, single headed, as in base class | |
self.time_mix_block = VideoTransformerBlock( | |
dim=in_channels, | |
n_heads=1, | |
d_head=in_channels, | |
checkpoint=True, | |
ff_in=True, | |
attn_mode="softmax-xformers", | |
) | |
time_embed_dim = self.in_channels * 4 | |
self.video_time_embed = torch.nn.Sequential( | |
torch.nn.Linear(self.in_channels, time_embed_dim), | |
torch.nn.SiLU(), | |
torch.nn.Linear(time_embed_dim, self.in_channels), | |
) | |
self.merge_strategy = merge_strategy | |
if self.merge_strategy == "fixed": | |
self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
elif self.merge_strategy == "learned": | |
self.register_parameter( | |
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) | |
) | |
else: | |
raise ValueError(f"unknown merge strategy {self.merge_strategy}") | |
def forward(self, x, timesteps, skip_time_block=False): | |
if skip_time_block: | |
return super().forward(x) | |
x_in = x | |
x = self.attention(x) | |
h, w = x.shape[2:] | |
x = rearrange(x, "b c h w -> b (h w) c") | |
x_mix = x | |
num_frames = torch.arange(timesteps, device=x.device) | |
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) | |
num_frames = rearrange(num_frames, "b t -> (b t)") | |
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False) | |
emb = self.video_time_embed(t_emb) # b, n_channels | |
emb = emb[:, None, :] | |
x_mix = x_mix + emb | |
alpha = self.get_alpha() | |
x_mix = self.time_mix_block(x_mix, timesteps=timesteps) | |
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge | |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) | |
x = self.proj_out(x) | |
return x_in + x | |
def get_alpha( | |
self, | |
): | |
if self.merge_strategy == "fixed": | |
return self.mix_factor | |
elif self.merge_strategy == "learned": | |
return torch.sigmoid(self.mix_factor) | |
else: | |
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}") | |
def make_time_attn( | |
in_channels, | |
attn_type="vanilla", | |
attn_kwargs=None, | |
alpha: float = 0, | |
merge_strategy: str = "learned", | |
): | |
assert attn_type in [ | |
"vanilla", | |
"vanilla-xformers", | |
], f"attn_type {attn_type} not supported for spatio-temporal attention" | |
print( | |
f"making spatial and temporal attention of type '{attn_type}' with {in_channels} in_channels" | |
) | |
if not XFORMERS_IS_AVAILABLE and attn_type == "vanilla-xformers": | |
print( | |
f"Attention mode '{attn_type}' is not available. Falling back to vanilla attention. " | |
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}" | |
) | |
attn_type = "vanilla" | |
if attn_type == "vanilla": | |
assert attn_kwargs is None | |
return partialclass( | |
VideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy | |
) | |
elif attn_type == "vanilla-xformers": | |
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") | |
return partialclass( | |
MemoryEfficientVideoBlock, | |
in_channels, | |
alpha=alpha, | |
merge_strategy=merge_strategy, | |
) | |
else: | |
return NotImplementedError() | |
class Conv2DWrapper(torch.nn.Conv2d): | |
def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor: | |
return super().forward(input) | |
class VideoDecoder(Decoder): | |
available_time_modes = ["all", "conv-only", "attn-only"] | |
def __init__( | |
self, | |
*args, | |
video_kernel_size: Union[int, list] = [3,1,1], | |
alpha: float = 0.0, | |
merge_strategy: str = "learned", | |
time_mode: str = "conv-only", | |
**kwargs, | |
): | |
self.video_kernel_size = video_kernel_size | |
self.alpha = alpha | |
self.merge_strategy = merge_strategy | |
self.time_mode = time_mode | |
assert ( | |
self.time_mode in self.available_time_modes | |
), f"time_mode parameter has to be in {self.available_time_modes}" | |
super().__init__(*args, **kwargs) | |
def get_last_layer(self, skip_time_mix=False, **kwargs): | |
if self.time_mode == "attn-only": | |
raise NotImplementedError("TODO") | |
else: | |
return ( | |
self.conv_out.time_mix_conv.weight | |
if not skip_time_mix | |
else self.conv_out.weight | |
) | |
def _make_attn(self) -> Callable: | |
if self.time_mode not in ["conv-only", "only-last-conv"]: | |
return partialclass( | |
make_time_attn, | |
alpha=self.alpha, | |
merge_strategy=self.merge_strategy, | |
) | |
else: | |
return super()._make_attn() | |
def _make_conv(self) -> Callable: | |
if self.time_mode != "attn-only": | |
return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size) | |
else: | |
return Conv2DWrapper | |
def _make_resblock(self) -> Callable: | |
if self.time_mode not in ["attn-only", "only-last-conv"]: | |
return partialclass( | |
VideoResBlock, | |
video_kernel_size=self.video_kernel_size, | |
alpha=self.alpha, | |
merge_strategy=self.merge_strategy, | |
) | |
else: | |
return super()._make_resblock() |