Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import numpy as np | |
from tqdm import tqdm | |
from PIL import Image | |
from einops import rearrange | |
import torch | |
import torchvision | |
from torch import Tensor | |
from torchvision.utils import make_grid | |
from torchvision.transforms.functional import to_tensor | |
def frames_to_mp4(frame_dir,output_path,fps): | |
def read_first_n_frames(d: os.PathLike, num_frames: int): | |
if num_frames: | |
images = [Image.open(os.path.join(d, f)) for f in sorted(os.listdir(d))[:num_frames]] | |
else: | |
images = [Image.open(os.path.join(d, f)) for f in sorted(os.listdir(d))] | |
images = [to_tensor(x) for x in images] | |
return torch.stack(images) | |
videos = read_first_n_frames(frame_dir, num_frames=None) | |
videos = videos.mul(255).to(torch.uint8).permute(0, 2, 3, 1) | |
torchvision.io.write_video(output_path, videos, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None): | |
""" | |
video: torch.Tensor, b,c,t,h,w, 0-1 | |
if -1~1, enable rescale=True | |
""" | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
nrow = int(np.sqrt(n)) if nrow is None else nrow | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=nrow, padding=0) for framesheet in video] # [3, grid_h, grid_w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w] | |
grid = torch.clamp(grid.float(), -1., 1.) | |
if rescale: | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3] | |
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def tensor2videogrids(video, root, filename, fps, rescale=True, clamp=True): | |
assert(video.dim() == 5) # b,c,t,h,w | |
assert(isinstance(video, torch.Tensor)) | |
video = video.detach().cpu() | |
if clamp: | |
video = torch.clamp(video, -1., 1.) | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(np.sqrt(n))) for framesheet in video] # [3, grid_h, grid_w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w] | |
if rescale: | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3] | |
path = os.path.join(root, filename) | |
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def log_local(batch_logs, save_dir, filename, save_fps=10, rescale=True): | |
if batch_logs is None: | |
return None | |
""" save images and videos from images dict """ | |
def save_img_grid(grid, path, rescale): | |
if rescale: | |
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
grid = grid.numpy() | |
grid = (grid * 255).astype(np.uint8) | |
os.makedirs(os.path.split(path)[0], exist_ok=True) | |
Image.fromarray(grid).save(path) | |
for key in batch_logs: | |
value = batch_logs[key] | |
if isinstance(value, list) and isinstance(value[0], str): | |
## a batch of captions | |
path = os.path.join(save_dir, "%s-%s.txt"%(key, filename)) | |
with open(path, 'w') as f: | |
for i, txt in enumerate(value): | |
f.write(f'idx={i}, txt={txt}\n') | |
f.close() | |
elif isinstance(value, torch.Tensor) and value.dim() == 5: | |
## save video grids | |
video = value # b,c,t,h,w | |
## only save grayscale or rgb mode | |
if video.shape[1] != 1 and video.shape[1] != 3: | |
continue | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(1), padding=0) for framesheet in video] #[3, n*h, 1*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
if rescale: | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
path = os.path.join(save_dir, "%s-%s.mp4"%(key, filename)) | |
torchvision.io.write_video(path, grid, fps=save_fps, video_codec='h264', options={'crf': '10'}) | |
## save frame sheet | |
img = value | |
video_frames = rearrange(img, 'b c t h w -> (b t) c h w') | |
t = img.shape[2] | |
grid = torchvision.utils.make_grid(video_frames, nrow=t, padding=0) | |
path = os.path.join(save_dir, "%s-%s.jpg"%(key, filename)) | |
#save_img_grid(grid, path, rescale) | |
elif isinstance(value, torch.Tensor) and value.dim() == 4: | |
## save image grids | |
img = value | |
## only save grayscale or rgb mode | |
if img.shape[1] != 1 and img.shape[1] != 3: | |
continue | |
n = img.shape[0] | |
grid = torchvision.utils.make_grid(img, nrow=1, padding=0) | |
path = os.path.join(save_dir, "%s-%s.jpg"%(key, filename)) | |
save_img_grid(grid, path, rescale) | |
else: | |
pass | |
def prepare_to_log(batch_logs, max_images=100000, clamp=True): | |
if batch_logs is None: | |
return None | |
# process | |
for key in batch_logs: | |
N = batch_logs[key].shape[0] if hasattr(batch_logs[key], 'shape') else len(batch_logs[key]) | |
N = min(N, max_images) | |
batch_logs[key] = batch_logs[key][:N] | |
## in batch_logs: images <batched tensor> & caption <text list> | |
if isinstance(batch_logs[key], torch.Tensor): | |
batch_logs[key] = batch_logs[key].detach().cpu() | |
if clamp: | |
try: | |
batch_logs[key] = torch.clamp(batch_logs[key].float(), -1., 1.) | |
except RuntimeError: | |
print("clamp_scalar_cpu not implemented for Half") | |
return batch_logs | |
# ---------------------------------------------------------------------------------------------- | |
def fill_with_black_squares(video, desired_len: int) -> Tensor: | |
if len(video) >= desired_len: | |
return video | |
return torch.cat([ | |
video, | |
torch.zeros_like(video[0]).unsqueeze(0).repeat(desired_len - len(video), 1, 1, 1), | |
], dim=0) | |
# ---------------------------------------------------------------------------------------------- | |
def load_num_videos(data_path, num_videos): | |
# first argument can be either data_path of np array | |
if isinstance(data_path, str): | |
videos = np.load(data_path)['arr_0'] # NTHWC | |
elif isinstance(data_path, np.ndarray): | |
videos = data_path | |
else: | |
raise Exception | |
if num_videos is not None: | |
videos = videos[:num_videos, :, :, :, :] | |
return videos | |
def npz_to_video_grid(data_path, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True): | |
# videos = torch.tensor(np.load(data_path)['arr_0']).permute(0,1,4,2,3).div_(255).mul_(2) - 1.0 # NTHWC->NTCHW, np int -> torch tensor 0-1 | |
if isinstance(data_path, str): | |
videos = load_num_videos(data_path, num_videos) | |
elif isinstance(data_path, np.ndarray): | |
videos = data_path | |
else: | |
raise Exception | |
n,t,h,w,c = videos.shape | |
videos_th = [] | |
for i in range(n): | |
video = videos[i, :,:,:,:] | |
images = [video[j, :,:,:] for j in range(t)] | |
images = [to_tensor(img) for img in images] | |
video = torch.stack(images) | |
videos_th.append(video) | |
if verbose: | |
videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW | |
else: | |
videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW | |
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W] | |
if nrow is None: | |
nrow = int(np.ceil(np.sqrt(n))) | |
if verbose: | |
frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')] | |
else: | |
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids] | |
if os.path.dirname(out_path) != "": | |
os.makedirs(os.path.dirname(out_path), exist_ok=True) | |
frame_grids = (torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C] | |
torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'}) | |