add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# common
|
3 |
+
import os, sys
|
4 |
+
import math
|
5 |
+
#import numpy as np
|
6 |
+
|
7 |
+
#from random import randrange
|
8 |
+
|
9 |
+
# torch
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
#from torch import einsum
|
13 |
+
|
14 |
+
import torch.nn.functional as F
|
15 |
+
|
16 |
+
#from torch import optim
|
17 |
+
#from torch.optim import lr_scheduler
|
18 |
+
|
19 |
+
#from torch.utils.data import DataLoader
|
20 |
+
#from torch.utils.data.sampler import SubsetRandomSampler
|
21 |
+
|
22 |
+
# torchVision
|
23 |
+
import torchvision
|
24 |
+
from torchvision import transforms
|
25 |
+
#from torchvision import models
|
26 |
+
#from torchvision.datasets import CIFAR10, CIFAR100
|
27 |
+
|
28 |
+
# torchinfo
|
29 |
+
#from torchinfo import summary
|
30 |
+
|
31 |
+
# Define model
|
32 |
+
class WideBasic(nn.Module):
|
33 |
+
def __init__(self, in_channels, out_channels, stride=1):
|
34 |
+
super().__init__()
|
35 |
+
self.residual = nn.Sequential(
|
36 |
+
nn.BatchNorm2d(in_channels),
|
37 |
+
nn.ReLU(inplace=True),
|
38 |
+
nn.Conv2d(
|
39 |
+
in_channels,
|
40 |
+
out_channels,
|
41 |
+
kernel_size=3,
|
42 |
+
stride=stride,
|
43 |
+
padding=1
|
44 |
+
),
|
45 |
+
nn.BatchNorm2d(out_channels),
|
46 |
+
nn.ReLU(inplace=True),
|
47 |
+
nn.Dropout(),
|
48 |
+
nn.Conv2d(
|
49 |
+
out_channels,
|
50 |
+
out_channels,
|
51 |
+
kernel_size=3,
|
52 |
+
stride=1,
|
53 |
+
padding=1
|
54 |
+
)
|
55 |
+
)
|
56 |
+
|
57 |
+
self.shortcut = nn.Sequential()
|
58 |
+
|
59 |
+
if in_channels != out_channels or stride != 1:
|
60 |
+
self.shortcut = nn.Sequential(
|
61 |
+
nn.Conv2d(in_channels, out_channels, 1, stride=stride)
|
62 |
+
)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
residual = self.residual(x)
|
66 |
+
shortcut = self.shortcut(x)
|
67 |
+
|
68 |
+
return residual + shortcut
|
69 |
+
|
70 |
+
class WideResNet(nn.Module):
|
71 |
+
def __init__(self, num_classes, block, depth=50, widen_factor=1):
|
72 |
+
super().__init__()
|
73 |
+
|
74 |
+
self.depth = depth
|
75 |
+
k = widen_factor
|
76 |
+
l = int((depth - 4) / 6)
|
77 |
+
self.in_channels = 16
|
78 |
+
self.init_conv = nn.Conv2d(3, self.in_channels, 3, 1, padding=1)
|
79 |
+
self.conv2 = self._make_layer(block, 16 * k, l, 1)
|
80 |
+
self.conv3 = self._make_layer(block, 32 * k, l, 2)
|
81 |
+
self.conv4 = self._make_layer(block, 64 * k, l, 2)
|
82 |
+
self.bn = nn.BatchNorm2d(64 * k)
|
83 |
+
self.relu = nn.ReLU(inplace=True)
|
84 |
+
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
|
85 |
+
self.linear = nn.Linear(64 * k, num_classes)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
x = self.init_conv(x)
|
89 |
+
x = self.conv2(x)
|
90 |
+
x = self.conv3(x)
|
91 |
+
x = self.conv4(x)
|
92 |
+
x = self.bn(x)
|
93 |
+
x = self.relu(x)
|
94 |
+
x = self.avg_pool(x)
|
95 |
+
x = x.view(x.size(0), -1)
|
96 |
+
x = self.linear(x)
|
97 |
+
|
98 |
+
return x
|
99 |
+
|
100 |
+
def _make_layer(self, block, out_channels, num_blocks, stride):
|
101 |
+
strides = [stride] + [1] * (num_blocks - 1)
|
102 |
+
layers = []
|
103 |
+
for stride in strides:
|
104 |
+
layers.append(block(self.in_channels, out_channels, stride))
|
105 |
+
self.in_channels = out_channels
|
106 |
+
|
107 |
+
return nn.Sequential(*layers)
|
108 |
+
|
109 |
+
|
110 |
+
model = WideResNet(10, WideBasic, depth=40, widen_factor=10)
|
111 |
+
model.load_state_dict(
|
112 |
+
torch.load("weights/cifar10_wide_resnet_model.pt",
|
113 |
+
map_location=torch.device('cpu'))
|
114 |
+
)
|
115 |
+
|
116 |
+
model.eval()
|
117 |
+
|
118 |
+
import gradio as gr
|
119 |
+
from torchvision import transforms
|
120 |
+
|
121 |
+
import os
|
122 |
+
import glob
|
123 |
+
|
124 |
+
examples_dir = './examples'
|
125 |
+
example_files = glob.glob(os.path.join(examples_dir, '*.png'))
|
126 |
+
|
127 |
+
normalize = transforms.Normalize(
|
128 |
+
mean=[0.4914, 0.4822, 0.4465],
|
129 |
+
std=[0.2470, 0.2435, 0.2616],
|
130 |
+
)
|
131 |
+
|
132 |
+
transform = transforms.Compose([
|
133 |
+
transforms.ToTensor(),
|
134 |
+
normalize,
|
135 |
+
])
|
136 |
+
|
137 |
+
classes = [
|
138 |
+
"airplane",
|
139 |
+
"automobile",
|
140 |
+
"bird",
|
141 |
+
"cat",
|
142 |
+
"deer",
|
143 |
+
"dog",
|
144 |
+
"frog",
|
145 |
+
"horse",
|
146 |
+
"ship",
|
147 |
+
"truck",
|
148 |
+
]
|
149 |
+
|
150 |
+
def predict(image):
|
151 |
+
tsr_image = transform(image).unsqueeze(dim=0)
|
152 |
+
|
153 |
+
model.eval()
|
154 |
+
with torch.no_grad():
|
155 |
+
pred = model(tsr_image)
|
156 |
+
prob = torch.nn.functional.softmax(pred[0], dim=0)
|
157 |
+
|
158 |
+
confidences = {classes[i]: float(prob[i]) for i in range(10)}
|
159 |
+
return confidences
|
160 |
+
|
161 |
+
|
162 |
+
with gr.Blocks(css=".gradio-container {background:honeydew;}", title="WideResNet - CIFAR10 Classification"
|
163 |
+
) as demo:
|
164 |
+
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">WideResNet - CIFAR10 Classification</div>""")
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
input_image = gr.Image(type="pil", image_mode="RGB", shape=(32, 32))
|
168 |
+
|
169 |
+
output_label=gr.Label(label="Probabilities", num_top_classes=3)
|
170 |
+
|
171 |
+
send_btn = gr.Button("Infer")
|
172 |
+
|
173 |
+
gr.Examples(example_files, inputs=input_image)
|
174 |
+
#gr.Examples(['examples/sample02.png', 'examples/sample04.png'], inputs=input_image2)
|
175 |
+
|
176 |
+
send_btn.click(fn=predict, inputs=input_image, outputs=output_label)
|
177 |
+
|
178 |
+
# demo.queue(concurrency_count=3)
|
179 |
+
demo.launch()
|
180 |
+
|
181 |
+
|
182 |
+
### EOF ###
|