|
import gradio as gr, random, re |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, set_seed |
|
|
|
tokenizer_en_es = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-es-en") |
|
model_en_es = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-es-en") |
|
en_es_translator = pipeline("translation_es_to_en", model = model_en_es, tokenizer = tokenizer_en_es) |
|
|
|
gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2') |
|
|
|
with open("ideas.txt", "r") as f: |
|
line = f.readlines() |
|
|
|
|
|
def generate(inputs): |
|
resultado = en_es_translator(inputs) |
|
starting_text = resultado[0]['translation_text'] |
|
|
|
for count in range(4): |
|
seed = random.randint(100, 1000000) |
|
set_seed(seed) |
|
|
|
if starting_text == "": |
|
starting_text: str = line[random.randrange(0, len(line))].replace("\n", "").lower().capitalize() |
|
starting_text: str = re.sub(r"[,:\-–.!;?_]", '', starting_text) |
|
print(starting_text) |
|
|
|
response = gpt2_pipe(starting_text, max_length=(len(starting_text) + random.randint(60, 90)), num_return_sequences=4) |
|
response_list = [] |
|
for x in response: |
|
resp = x['generated_text'].strip() |
|
if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "—")) is False: |
|
response_list.append(resp+'\n') |
|
|
|
response_end = "\n".join(response_list) |
|
response_end = re.sub('[^ ]+\.[^ ]+','', response_end) |
|
response_end = response_end.replace("<", "").replace(">", "") |
|
|
|
if response_end != "": |
|
return response_end |
|
if count == 4: |
|
return response_end |
|
|
|
|
|
txt = gr.Textbox(lines=1, label="Texto inicial", placeholder="Texto en Español") |
|
out = gr.Textbox(lines=4, label="Sugerencia generada") |
|
|
|
|
|
title = "Generador de sugerencia para Stable Diffusion (SD)" |
|
description = 'Esta es una demostración de la serie de modelos: "MagicPrompt", en este caso, dirigida a: Stable Diffusion. Para utilizarlo, simplemente envíe su texto.' |
|
article = "" |
|
|
|
gr.Interface(fn=generate, |
|
inputs=txt, |
|
outputs=out, |
|
title=title, |
|
description=description, |
|
article=article, |
|
allow_flagging='never', |
|
cache_examples=False, |
|
theme="default").launch(enable_queue=True, debug=True) |
|
|