TuringsSolutions's picture
Create app.py
0d2d507 verified
raw
history blame
944 Bytes
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
# Load the model and tokenizer
model_name = "TuringsSolutions/TechLegalV1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Function to make predictions
def predict(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Assuming we need to extract some specific information from outputs
# Modify this part based on your model's output format
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
# Create a Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
outputs="json",
title="Tech Legal Model",
description="A model for analyzing tech legal documents."
)
# Launch the interface
if __name__ == "__main__":
iface.launch()