import gradio as gr from transformers import AutoModel, AutoTokenizer import torch # Load the model and tokenizer model_name = "TuringsSolutions/TechLegalV1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) # Function to make predictions def predict(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # Assuming we need to extract some specific information from outputs # Modify this part based on your model's output format return outputs.last_hidden_state.mean(dim=1).squeeze().tolist() # Create a Gradio interface iface = gr.Interface( fn=predict, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."), outputs="json", title="Tech Legal Model", description="A model for analyzing tech legal documents." ) # Launch the interface if __name__ == "__main__": iface.launch()