Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_keras
|
2 |
+
import gradio as gr
|
3 |
+
from rdkit import Chem, RDLogger
|
4 |
+
from rdkit.Chem.Draw import IPythonConsole, MolsToGridImage
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
from tensorflow import keras
|
8 |
+
|
9 |
+
RDLogger.DisableLog("rdApp.*")
|
10 |
+
|
11 |
+
def graph_to_molecule(graph):
|
12 |
+
# Unpack graph
|
13 |
+
adjacency, features = graph
|
14 |
+
|
15 |
+
# RWMol is a molecule object intended to be edited
|
16 |
+
molecule = Chem.RWMol()
|
17 |
+
|
18 |
+
# Remove "no atoms" & atoms with no bonds
|
19 |
+
keep_idx = np.where(
|
20 |
+
(np.argmax(features, axis=1) != ATOM_DIM - 1)
|
21 |
+
& (np.sum(adjacency[:-1], axis=(0, 1)) != 0)
|
22 |
+
)[0]
|
23 |
+
features = features[keep_idx]
|
24 |
+
adjacency = adjacency[:, keep_idx, :][:, :, keep_idx]
|
25 |
+
|
26 |
+
# Add atoms to molecule
|
27 |
+
for atom_type_idx in np.argmax(features, axis=1):
|
28 |
+
atom = Chem.Atom(atom_mapping[atom_type_idx])
|
29 |
+
_ = molecule.AddAtom(atom)
|
30 |
+
|
31 |
+
# Add bonds between atoms in molecule; based on the upper triangles
|
32 |
+
# of the [symmetric] adjacency tensor
|
33 |
+
(bonds_ij, atoms_i, atoms_j) = np.where(np.triu(adjacency) == 1)
|
34 |
+
for (bond_ij, atom_i, atom_j) in zip(bonds_ij, atoms_i, atoms_j):
|
35 |
+
if atom_i == atom_j or bond_ij == BOND_DIM - 1:
|
36 |
+
continue
|
37 |
+
bond_type = bond_mapping[bond_ij]
|
38 |
+
molecule.AddBond(int(atom_i), int(atom_j), bond_type)
|
39 |
+
|
40 |
+
# Sanitize the molecule; for more information on sanitization, see
|
41 |
+
# https://www.rdkit.org/docs/RDKit_Book.html#molecular-sanitization
|
42 |
+
flag = Chem.SanitizeMol(molecule, catchErrors=True)
|
43 |
+
# Let's be strict. If sanitization fails, return None
|
44 |
+
if flag != Chem.SanitizeFlags.SANITIZE_NONE:
|
45 |
+
return None
|
46 |
+
|
47 |
+
return molecule
|
48 |
+
|
49 |
+
generator = from_pretrained_keras("keras-io/wgan-molecular-graphs")
|
50 |
+
|
51 |
+
def predict(num_mol):
|
52 |
+
samples = num_mol*2
|
53 |
+
z = tf.random.normal((samples, 64))
|
54 |
+
graph = generator.predict(z)
|
55 |
+
# obtain one-hot encoded adjacency tensor
|
56 |
+
adjacency = tf.argmax(graph[0], axis=1)
|
57 |
+
adjacency = tf.one_hot(adjacency, depth=BOND_DIM, axis=1)
|
58 |
+
# Remove potential self-loops from adjacency
|
59 |
+
adjacency = tf.linalg.set_diag(adjacency, tf.zeros(tf.shape(adjacency)[:-1]))
|
60 |
+
# obtain one-hot encoded feature tensor
|
61 |
+
features = tf.argmax(graph[1], axis=2)
|
62 |
+
features = tf.one_hot(features, depth=5, axis=2)
|
63 |
+
molecules = [
|
64 |
+
graph_to_molecule([adjacency[i].numpy(), features[i].numpy()])
|
65 |
+
for i in range(samples)
|
66 |
+
]
|
67 |
+
MolsToGridImage(
|
68 |
+
[m for m in molecules if m is not None][:num_mol], molsPerRow=5, subImgSize=(150, 150), returnPNG=False,
|
69 |
+
).save("img.png")
|
70 |
+
return 'img.png'
|
71 |
+
|
72 |
+
gr.Interface(
|
73 |
+
predict,
|
74 |
+
inputs=[
|
75 |
+
gr.inputs.Slider(5, 50, label='Number of Molecular Graphs', step=5, default=10),
|
76 |
+
],
|
77 |
+
outputs="image",
|
78 |
+
).launch(debug=True)
|