awacke1 commited on
Commit
6a39b23
β€’
1 Parent(s): 9301802

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md CHANGED
@@ -38,3 +38,106 @@ Perform a calculated function on the merged dataset.
38
  7. [2023 Best Minds in AGI AI Gamification and Large Language Models](https://www.youtube.com/playlist?list=PLHgX2IExbFotmFeBTpyje1uI22n0GAkXT)
39
  8. [2023 State of the Art for Vision Image Classification, Text Classification and Regression, Extractive Question Answering and Tabular Classification](https://www.youtube.com/playlist?list=PLHgX2IExbFotPcPu6pauNHOoZTTbnAQ2F)
40
  9. [2023 AutoML DataRobot and AI Platforms for Building Models, Features, Test, and Transparency](https://www.youtube.com/playlist?list=PLHgX2IExbFovsY2oGbDwdEhPrakkC8i3g)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  7. [2023 Best Minds in AGI AI Gamification and Large Language Models](https://www.youtube.com/playlist?list=PLHgX2IExbFotmFeBTpyje1uI22n0GAkXT)
39
  8. [2023 State of the Art for Vision Image Classification, Text Classification and Regression, Extractive Question Answering and Tabular Classification](https://www.youtube.com/playlist?list=PLHgX2IExbFotPcPu6pauNHOoZTTbnAQ2F)
40
  9. [2023 AutoML DataRobot and AI Platforms for Building Models, Features, Test, and Transparency](https://www.youtube.com/playlist?list=PLHgX2IExbFovsY2oGbDwdEhPrakkC8i3g)
41
+
42
+
43
+
44
+
45
+ ## Language Models πŸ—£οΈ
46
+ πŸ† Bloom sets new record for most performant and efficient AI model in science! 🌸
47
+
48
+ ### Comparison of Large Language Models
49
+ | Model Name | Model Size (in Parameters) |
50
+ | ----------------- | -------------------------- |
51
+ | BigScience-tr11-176B | 176 billion |
52
+ | GPT-3 | 175 billion |
53
+ | OpenAI's DALL-E 2.0 | 500 million |
54
+ | NVIDIA's Megatron | 8.3 billion |
55
+ | Transformer-XL | 250 million |
56
+ | XLNet | 210 million |
57
+
58
+ ## ChatGPT Datasets πŸ“š
59
+ - WebText
60
+ - Common Crawl
61
+ - BooksCorpus
62
+ - English Wikipedia
63
+ - Toronto Books Corpus
64
+ - OpenWebText
65
+ -
66
+ ## ChatGPT Datasets - Details πŸ“š
67
+ - **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
68
+ - [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
69
+ - **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3.
70
+ - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al.
71
+ - **BooksCorpus:** A dataset of over 11,000 books from a variety of genres.
72
+ - [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al.
73
+ - **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017.
74
+ - [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search
75
+ - **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
76
+ - [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
77
+ - **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
78
+ - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
79
+
80
+ ## Big Science Model πŸš€
81
+ - πŸ“œ Papers:
82
+ 1. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model [Paper](https://arxiv.org/abs/2211.05100)
83
+ 2. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism [Paper](https://arxiv.org/abs/1909.08053)
84
+ 3. 8-bit Optimizers via Block-wise Quantization [Paper](https://arxiv.org/abs/2110.02861)
85
+ 4. Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation [Paper](https://arxiv.org/abs/2108.12409)
86
+ 5. [Other papers related to Big Science](https://huggingface.co/models?other=doi:10.57967/hf/0003)
87
+ 6. [217 other models optimized for use with Bloom](https://huggingface.co/models?other=bloom)
88
+
89
+ - πŸ“š Datasets:
90
+
91
+ **Datasets:**
92
+ 1. - **Universal Dependencies:** A collection of annotated corpora for natural language processing in a range of languages, with a focus on dependency parsing.
93
+ - [Universal Dependencies official website.](https://universaldependencies.org/)
94
+ 2. - **WMT 2014:** The fourth edition of the Workshop on Statistical Machine Translation, featuring shared tasks on translating between English and various other languages.
95
+ - [WMT14 website.](http://www.statmt.org/wmt14/)
96
+ 3. - **The Pile:** An English language corpus of diverse text, sourced from various places on the internet.
97
+ - [The Pile official website.](https://pile.eleuther.ai/)
98
+ 4. - **HumanEval:** A dataset of English sentences, annotated with human judgments on a range of linguistic qualities.
99
+ - [HumanEval: An Evaluation Benchmark for Language Understanding](https://github.com/google-research-datasets/humaneval) by Gabriel Ilharco, Daniel Loureiro, Pedro Rodriguez, and Afonso Mendes.
100
+ 5. - **FLORES-101:** A dataset of parallel sentences in 101 languages, designed for multilingual machine translation.
101
+ - [FLORES-101: A Massively Multilingual Parallel Corpus for Language Understanding](https://flores101.opennmt.net/) by Aman Madaan, Shruti Rijhwani, Raghav Gupta, and Mitesh M. Khapra.
102
+ 6. - **CrowS-Pairs:** A dataset of sentence pairs, designed for evaluating the plausibility of generated text.
103
+ - [CrowS-Pairs: A Challenge Dataset for Plausible Plausibility Judgments](https://github.com/stanford-cogsci/crows-pairs) by Andrea Madotto, Zhaojiang Lin, Chien-Sheng Wu, Pascale Fung, and Caiming Xiong.
104
+ 7. - **WikiLingua:** A dataset of parallel sentences in 75 languages, sourced from Wikipedia.
105
+ - [WikiLingua: A New Benchmark Dataset for Cross-Lingual Wikification](https://arxiv.org/abs/2105.08031) by Jiarui Yao, Yanqiao Zhu, Ruihan Bao, Guosheng Lin, Lidong Bing, and Bei Shi.
106
+ 8. - **MTEB:** A dataset of English sentences, annotated with their entailment relationships with respect to other sentences.
107
+ - [Multi-Task Evaluation Benchmark for Natural Language Inference](https://github.com/google-research-datasets/mteb) by MichaΕ‚ Lukasik, Marcin Junczys-Dowmunt, and Houda Bouamor.
108
+ 9. - **xP3:** A dataset of English sentences, annotated with their paraphrase relationships with respect to other sentences.
109
+ - [xP3: A Large-Scale Evaluation Benchmark for Paraphrase Identification in Context](https://github.com/nyu-dl/xp3) by Aniket Didolkar, James Mayfield, Markus Saers, and Jason Baldridge.
110
+ 10. - **DiaBLa:** A dataset of English dialogue, annotated with dialogue acts.
111
+ - [A Large-Scale Corpus for Conversation Disentanglement](https://github.com/HLTCHKUST/DiaBLA) by Samuel Broscheit, AntΓ³nio Branco, and AndrΓ© F. T. Martins.
112
+
113
+ - πŸ“š Dataset Papers with Code
114
+ 1. [Universal Dependencies](https://paperswithcode.com/dataset/universal-dependencies)
115
+ 2. [WMT 2014](https://paperswithcode.com/dataset/wmt-2014)
116
+ 3. [The Pile](https://paperswithcode.com/dataset/the-pile)
117
+ 4. [HumanEval](https://paperswithcode.com/dataset/humaneval)
118
+ 5. [FLORES-101](https://paperswithcode.com/dataset/flores-101)
119
+ 6. [CrowS-Pairs](https://paperswithcode.com/dataset/crows-pairs)
120
+ 7. [WikiLingua](https://paperswithcode.com/dataset/wikilingua)
121
+ 8. [MTEB](https://paperswithcode.com/dataset/mteb)
122
+ 9. [xP3](https://paperswithcode.com/dataset/xp3)
123
+ 10. [DiaBLa](https://paperswithcode.com/dataset/diabla)
124
+
125
+ # Deep RL ML Strategy 🧠
126
+ The AI strategies are:
127
+ - Language Model Preparation using Human Augmented with Supervised Fine Tuning πŸ€–
128
+ - Reward Model Training with Prompts Dataset Multi-Model Generate Data to Rank 🎁
129
+ - Fine Tuning with Reinforcement Reward and Distance Distribution Regret Score 🎯
130
+ - Proximal Policy Optimization Fine Tuning 🀝
131
+ - Variations - Preference Model Pretraining πŸ€”
132
+ - Use Ranking Datasets Sentiment - Thumbs Up/Down, Distribution πŸ“Š
133
+ - Online Version Getting Feedback πŸ’¬
134
+ - OpenAI - InstructGPT - Humans generate LM Training Text πŸ”
135
+ - DeepMind - Advantage Actor Critic Sparrow, GopherCite 🦜
136
+ - Reward Model Human Prefence Feedback πŸ†
137
+
138
+
139
+ For more information on specific techniques and implementations, check out the following resources:
140
+ - OpenAI's paper on [GPT-3](https://arxiv.org/abs/2005.14165) which details their Language Model Preparation approach
141
+ - DeepMind's paper on [SAC](https://arxiv.org/abs/1801.01290) which describes the Advantage Actor Critic algorithm
142
+ - OpenAI's paper on [Reward Learning](https://arxiv.org/abs/1810.06580) which explains their approach to training Reward Models
143
+ - OpenAI's blog post on [GPT-3's fine-tuning process](https://openai.com/blog/fine-tuning-gpt-3/)