File size: 4,325 Bytes
c12bd84
 
dfa14a8
843a5ef
c12bd84
03ade34
c12bd84
e854cb9
43b4e29
ca8d4b9
43b4e29
8488477
 
 
e3642ff
8488477
 
 
 
 
 
 
e3642ff
8488477
 
 
 
 
e3642ff
a34a60b
c671de9
e3642ff
43b4e29
8488477
 
 
 
a34a60b
 
 
 
 
 
 
 
 
8488477
 
337b761
8488477
337b761
b94ee8f
 
 
337b761
8488477
 
 
337b761
 
 
8488477
 
 
 
 
 
337b761
7ed3839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337b761
 
7ed3839
ca8d4b9
 
 
 
 
 
 
 
 
 
7ed3839
 
843a5ef
 
8488477
ac931c6
 
8488477
ac931c6
c671de9
8488477
c671de9
 
ca8e784
 
8488477
ca8e784
 
843a5ef
c671de9
8488477
c671de9
 
8488477
c671de9
 
8488477
c671de9
 
 
 
 
 
ca8d4b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import streamlit as st
import pandas as pd
import plotly.express as px
from result_data_processor import ResultDataProcessor

data_provider = ResultDataProcessor()

st.title('Model Evaluation Results including MMLU by task')

filters = st.checkbox('Select Models and Evaluations')

# Create defaults for selected columns and models
selected_columns = data_provider.data.columns.tolist()
selected_models = data_provider.data.index.tolist()

if filters:
    # Create checkboxes for each column
    selected_columns = st.multiselect(
        'Select Columns',
        data_provider.data.columns.tolist(),
        default=selected_columns
    )

    selected_models = st.multiselect(
        'Select Models',
        data_provider.data.index.tolist(),
        default=selected_models
    )

# Get the filtered data
st.header('Sortable table')
filtered_data = data_provider.get_data(selected_models)

# sort the table by the MMLU_average column
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False)
st.dataframe(filtered_data[selected_columns])

# CSV download
csv = filtered_data.to_csv(index=True)
st.download_button(
    label="Download data as CSV",
    data=csv,
    file_name="model_evaluation_results.csv",
    mime="text/csv",
)


def create_plot(df, arc_column, moral_column, models=None):
    if models is not None:
        df = df[df.index.isin(models)]

    # remove rows with NaN values
    df = df.dropna(subset=[arc_column, moral_column])

    plot_data = pd.DataFrame({
        'Model': df.index,
        arc_column: df[arc_column],
        moral_column: df[moral_column],
    })

    plot_data['color'] = 'purple'
    fig = px.scatter(plot_data, x=arc_column, y=moral_column, color='color', hover_data=['Model'], trendline="ols")
    fig.update_layout(showlegend=False, 
                      xaxis_title=arc_column,
                      yaxis_title=moral_column,
                      xaxis = dict(),
                      yaxis = dict())
    
    # Add a dashed line at 0.25 for the moral columns
    x_min = df[arc_column].min()
    x_max = df[arc_column].max()

    y_min = df[moral_column].min()
    y_max = df[moral_column].max()

    if arc_column.startswith('MMLU'): 
        fig.add_shape(
        type='line',
        x0=0.25, x1=0.25,
        y0=y_min, y1=y_max,
        line=dict(
            color='red',
            width=2,
            dash='dash'
        )
        )

    if moral_column.startswith('MMLU'):
        fig.add_shape(
        type='line',
        x0=x_min, x1=x_max,
        y0=0.25, y1=0.25,
        line=dict(
            color='red',
            width=2,
            dash='dash'
        )
        )

    
    return fig

# Custom scatter plots
st.header('Custom scatter plots')
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1)

if selected_x_column != selected_y_column:    # Avoid creating a plot with the same column on both axes
    fig = create_plot(filtered_data, selected_x_column, selected_y_column)
    st.plotly_chart(fig)
else:
    st.write("Please select different columns for the x and y axes.")

# end of custom scatter plots

st.header('Overall evaluation comparisons')

fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10')
st.plotly_chart(fig)

fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_average')
st.plotly_chart(fig)

fig = create_plot(filtered_data, 'hellaswag|10', 'MMLU_average')
st.plotly_chart(fig)

st.header('Top 50 models on MMLU_average')
top_50 = filtered_data.nlargest(50, 'MMLU_average')
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average')
st.plotly_chart(fig)

st.header('Moral Reasoning')

fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios')
st.plotly_chart(fig)

fig = create_plot(filtered_data, 'MMLU_moral_disputes', 'MMLU_moral_scenarios')
st.plotly_chart(fig)

fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
st.plotly_chart(fig)

fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns)
st.plotly_chart(fig)

fig = px.histogram(filtered_data, x="MMLU_moral_disputes", marginal="rug", hover_data=filtered_data.columns)
st.plotly_chart(fig)