File size: 5,519 Bytes
843a5ef dcadab7 843a5ef ee5ac8e 843a5ef 31bed1a 843a5ef ee5ac8e abac22e e03b231 abac22e dcadab7 843a5ef 6d41115 e79bcf3 6d41115 52d3b03 6d41115 abac22e e79bcf3 6d41115 843a5ef ee5ac8e e79bcf3 ee5ac8e 843a5ef ee5ac8e 843a5ef ee5ac8e 843a5ef ee5ac8e 9549fcc dcadab7 e03b231 dcadab7 31bed1a ee5ac8e 843a5ef ee5ac8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import pandas as pd
import os
import fnmatch
import json
import re
import numpy as np
class ResultDataProcessor:
def __init__(self, directory='results', pattern='results*.json'):
self.directory = directory
self.pattern = pattern
self.data = self.process_data()
self.ranked_data = self.rank_data()
@staticmethod
def _find_files(directory, pattern):
for root, dirs, files in os.walk(directory):
for basename in files:
if fnmatch.fnmatch(basename, pattern):
filename = os.path.join(root, basename)
yield filename
def _read_and_transform_data(self, filename):
with open(filename) as f:
data = json.load(f)
df = pd.DataFrame(data['results']).T
return df
def _cleanup_dataframe(self, df, model_name):
df = df.rename(columns={'acc': model_name})
df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
.str.replace('harness\|', '', regex=True)
.str.replace('\|5', '', regex=True))
return df[[model_name]]
def _extract_mc1(self, df, model_name):
df = df.rename(columns={'mc1': model_name})
# rename row harness|truthfulqa:mc|0 to truthfulqa:mc1
df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True))
# just return the harness|truthfulqa:mc1 row
df = df.loc[['harness|truthfulqa:mc1']]
return df[[model_name]]
def _extract_mc2(self, df, model_name):
# rename row harness|truthfulqa:mc|0 to truthfulqa:mc2
df = df.rename(columns={'mc2': model_name})
df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True))
df = df.loc[['harness|truthfulqa:mc2']]
return df[[model_name]]
# remove extreme outliers from column harness|truthfulqa:mc1
def _remove_mc1_outliers(self, df):
mc1 = df['harness|truthfulqa:mc1']
# Identify the outliers
# outliers_condition = mc1 > mc1.quantile(.95)
outliers_condition = mc1 == 1.0
# Replace the outliers with NaN
df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan
return df
@staticmethod
def _extract_parameters(model_name):
"""
Function to extract parameters from model name.
It handles names with 'b/B' for billions and 'm/M' for millions.
"""
# pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions)
pattern = re.compile(r'(\d+\.?\d*)([bBmM])')
match = pattern.search(model_name)
if match:
num, magnitude = match.groups()
num = float(num)
# convert millions to billions
if magnitude.lower() == 'm':
num /= 1000
return num
# return NaN if no match
return np.nan
def process_data(self):
dataframes = []
organization_names = []
for filename in self._find_files(self.directory, self.pattern):
raw_data = self._read_and_transform_data(filename)
split_path = filename.split('/')
model_name = split_path[2]
organization_name = split_path[1]
cleaned_data = self._cleanup_dataframe(raw_data, model_name)
mc1 = self._extract_mc1(raw_data, model_name)
mc2 = self._extract_mc2(raw_data, model_name)
cleaned_data = pd.concat([cleaned_data, mc1])
cleaned_data = pd.concat([cleaned_data, mc2])
organization_names.append(organization_name)
dataframes.append(cleaned_data)
data = pd.concat(dataframes, axis=1).transpose()
# Add organization column
data['organization'] = organization_names
# Add Model Name and rearrange columns
data['Model Name'] = data.index
cols = data.columns.tolist()
cols = cols[-1:] + cols[:-1]
data = data[cols]
# Remove the 'Model Name' column
data = data.drop(columns=['Model Name'])
# Add average column
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
# Reorder columns to move 'MMLU_average' to the third position
cols = data.columns.tolist()
cols = cols[:2] + cols[-1:] + cols[2:-1]
data = data[cols]
# Drop specific columns
data = data.drop(columns=['all', 'truthfulqa:mc|0'])
# Add parameter count column using extract_parameters function
data['Parameters'] = data.index.to_series().apply(self._extract_parameters)
# move the parameters column to the front of the dataframe
cols = data.columns.tolist()
cols = cols[-1:] + cols[:-1]
data = data[cols]
# remove extreme outliers from column harness|truthfulqa:mc1
data = self._remove_mc1_outliers(data)
return data
def rank_data(self):
# add rank for each column to the dataframe
# copy the data dataframe to avoid modifying the original dataframe
rank_data = self.data.copy()
for col in list(rank_data.columns):
rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min')
return rank_data
def get_data(self, selected_models):
return self.data[self.data.index.isin(selected_models)]
|