|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from result_data_processor import ResultDataProcessor |
|
|
|
data_provider = ResultDataProcessor() |
|
|
|
st.title('Model Evaluation Results including MMLU by task') |
|
|
|
filters = st.checkbox('Select Models and Evaluations') |
|
|
|
|
|
selected_columns = data_provider.data.columns.tolist() |
|
selected_models = data_provider.data.index.tolist() |
|
|
|
if filters: |
|
|
|
selected_columns = st.multiselect( |
|
'Select Columns', |
|
data_provider.data.columns.tolist(), |
|
default=selected_columns |
|
) |
|
|
|
selected_models = st.multiselect( |
|
'Select Models', |
|
data_provider.data.index.tolist(), |
|
default=selected_models |
|
) |
|
|
|
|
|
st.header('Sortable table') |
|
filtered_data = data_provider.get_data(selected_models) |
|
|
|
|
|
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False) |
|
st.dataframe(filtered_data[selected_columns]) |
|
|
|
|
|
csv = filtered_data.to_csv(index=True) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=csv, |
|
file_name="model_evaluation_results.csv", |
|
mime="text/csv", |
|
) |
|
|
|
|
|
def create_plot(df, arc_column, moral_column, models=None): |
|
if models is not None: |
|
df = df[df.index.isin(models)] |
|
|
|
|
|
df = df.dropna(subset=[arc_column, moral_column]) |
|
|
|
plot_data = pd.DataFrame({ |
|
'Model': df.index, |
|
arc_column: df[arc_column], |
|
moral_column: df[moral_column], |
|
}) |
|
|
|
plot_data['color'] = 'purple' |
|
fig = px.scatter(plot_data, x=arc_column, y=moral_column, color='color', hover_data=['Model'], trendline="ols") |
|
fig.update_layout(showlegend=False, |
|
xaxis_title=arc_column, |
|
yaxis_title=moral_column, |
|
xaxis = dict(), |
|
yaxis = dict()) |
|
|
|
return fig |
|
|
|
st.header('Custom scatter plots') |
|
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0) |
|
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1) |
|
|
|
if selected_x_column != selected_y_column: |
|
fig = create_plot(filtered_data, selected_x_column, selected_y_column) |
|
st.plotly_chart(fig) |
|
else: |
|
st.write("Please select different columns for the x and y axes.") |
|
|
|
st.header('Overall evaluation comparisons') |
|
|
|
fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10') |
|
st.plotly_chart(fig) |
|
|
|
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_average') |
|
st.plotly_chart(fig) |
|
|
|
fig = create_plot(filtered_data, 'hellaswag|10', 'MMLU_average') |
|
st.plotly_chart(fig) |
|
|
|
st.header('Top 50 models on MMLU_average') |
|
top_50 = filtered_data.nlargest(50, 'MMLU_average') |
|
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average') |
|
st.plotly_chart(fig) |
|
|
|
st.header('Moral Reasoning') |
|
|
|
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios') |
|
st.plotly_chart(fig) |
|
|
|
fig = create_plot(filtered_data, 'MMLU_moral_disputes', 'MMLU_moral_scenarios') |
|
st.plotly_chart(fig) |
|
|
|
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios') |
|
st.plotly_chart(fig) |
|
|
|
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns) |
|
st.plotly_chart(fig) |
|
|
|
fig = px.histogram(filtered_data, x="MMLU_moral_disputes", marginal="rug", hover_data=filtered_data.columns) |
|
st.plotly_chart(fig) |
|
|