|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from result_data_processor import ResultDataProcessor |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import plotly.graph_objects as go |
|
from streamlit.components.v1 import html |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
google_analytics_code = """ |
|
<!-- Google tag (gtag.js) --> |
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-MT9QYR70MC"></script> |
|
<script> |
|
window.dataLayer = window.dataLayer || []; |
|
function gtag(){dataLayer.push(arguments);} |
|
gtag('js', new Date()); |
|
gtag('config', 'G-MT9QYR70MC'); |
|
</script> |
|
""" |
|
html(google_analytics_code, height=0) |
|
|
|
|
|
|
|
def plot_top_n(df, target_column, n=10): |
|
top_n = df.nlargest(n, target_column) |
|
|
|
|
|
fig, ax1 = plt.subplots(figsize=(10, 5)) |
|
|
|
|
|
width = 0.28 |
|
ind = np.arange(len(top_n)) |
|
|
|
|
|
ax1.bar(ind - width, top_n[target_column], width=width, color='blue', label=target_column) |
|
ax1.bar(ind, top_n['MMLU_average'], width=width, color='orange', label='MMLU_average') |
|
|
|
|
|
ax1.set_title(f'Top {n} performing models on {target_column}') |
|
ax1.set_xlabel('Model') |
|
ax1.set_ylabel('Score') |
|
|
|
|
|
ax2 = ax1.twinx() |
|
|
|
|
|
ax2.bar(ind + width, top_n['Parameters'], width=width, color='red', label='Parameters') |
|
|
|
|
|
ax2.set_ylabel('Parameters', color='red') |
|
ax2.tick_params(axis='y', labelcolor='red') |
|
|
|
|
|
ax1.set_xticks(ind) |
|
ax1.set_xticklabels(top_n.index, rotation=45, ha="right") |
|
|
|
|
|
fig.tight_layout() |
|
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5)) |
|
|
|
|
|
st.pyplot(fig) |
|
|
|
|
|
def create_radar_chart_unfilled(df, model_names, metrics): |
|
fig = go.Figure() |
|
min_value = df.loc[model_names, metrics].min().min() |
|
max_value = df.loc[model_names, metrics].max().max() |
|
for model_name in model_names: |
|
values_model = df.loc[model_name, metrics] |
|
fig.add_trace(go.Scatterpolar( |
|
r=values_model, |
|
theta=metrics, |
|
name=model_name |
|
)) |
|
|
|
fig.update_layout( |
|
polar=dict( |
|
radialaxis=dict( |
|
visible=True, |
|
range=[min_value, max_value] |
|
)), |
|
showlegend=True, |
|
width=800, |
|
height=600 |
|
) |
|
return fig |
|
|
|
|
|
|
|
|
|
def create_line_chart(df, model_names, metrics): |
|
line_data = [] |
|
for model_name in model_names: |
|
values_model = df.loc[model_name, metrics] |
|
for metric, value in zip(metrics, values_model): |
|
line_data.append({'Model': model_name, 'Metric': metric, 'Value': value}) |
|
|
|
line_df = pd.DataFrame(line_data) |
|
|
|
fig = px.line(line_df, x='Metric', y='Value', color='Model', title='Comparison of Models', line_dash_sequence=['solid']) |
|
fig.update_layout(showlegend=True) |
|
return fig |
|
|
|
def find_top_differences_table(df, target_model, closest_models, num_differences=10, exclude_columns=['Parameters']): |
|
|
|
differences = df.loc[closest_models].drop(columns=exclude_columns).sub(df.loc[target_model]).abs() |
|
|
|
top_differences = differences.unstack().nlargest(num_differences) |
|
|
|
top_differences_table = pd.DataFrame({ |
|
'Task': [idx[0] for idx in top_differences.index], |
|
'Difference': top_differences.values |
|
}) |
|
|
|
unique_top_differences_tasks = list(set(top_differences_table['Task'].tolist())) |
|
return top_differences_table, unique_top_differences_tasks |
|
|
|
|
|
data_provider = ResultDataProcessor() |
|
|
|
|
|
st.title('Exploring the Characteristics of Large Language Models: An Interactive Portal for Analyzing 800+ Open Source Models Across 57 Diverse Evaluation Tasks') |
|
st.markdown("""***Last updated August 18th***""") |
|
st.markdown(""" |
|
Hugging Face has run evaluations on over 800 open source models and provides results on a |
|
[publicly available leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and [dataset](https://huggingface.co/datasets/open-llm-leaderboard/results). |
|
The Hugging Face leaderboard currently displays the overall result for Measuring Massive Multitask Language Understanding (MMLU), but not the results for individual tasks. |
|
This app provides a way to explore the results for individual tasks and compare models across tasks. |
|
There are 57 tasks in the MMLU evaluation that cover a wide variety of subjects including Science, Math, Humanities, Social Science, Applied Science, Logic, and Security. |
|
[Preliminary analysis of MMLU-by-Task data](https://coreymorrisdata.medium.com/preliminary-analysis-of-mmlu-evaluation-data-insights-from-500-open-source-models-e67885aa364b) |
|
""") |
|
|
|
filters = st.checkbox('Select Models and/or Evaluations') |
|
|
|
|
|
selected_columns = ['Parameters', 'MMLU_average'] if filters else data_provider.data.columns.tolist() |
|
|
|
|
|
selected_models = [] if filters else data_provider.data.index.tolist() |
|
|
|
if filters: |
|
|
|
selected_columns = st.multiselect( |
|
'Select Columns', |
|
data_provider.data.columns.tolist(), |
|
default=selected_columns |
|
) |
|
|
|
|
|
selected_models = st.multiselect( |
|
'Select Models', |
|
data_provider.data.index.tolist() |
|
) |
|
|
|
|
|
filtered_data = data_provider.get_data(selected_models) |
|
|
|
|
|
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False) |
|
|
|
|
|
parameter_threshold = st.selectbox( |
|
'Filter by Parameters (Less Than or Equal To):', |
|
options=[3, 7, 13, 35, 'No threshold'], |
|
index=4, |
|
format_func=lambda x: f"{x}" if isinstance(x, int) else x |
|
) |
|
|
|
|
|
if isinstance(parameter_threshold, int): |
|
filtered_data = filtered_data[filtered_data['Parameters'] <= parameter_threshold] |
|
|
|
|
|
|
|
search_query = st.text_input("Filter by Model Name:", "") |
|
|
|
|
|
if search_query: |
|
filtered_data = filtered_data[filtered_data.index.str.contains(search_query, case=False)] |
|
|
|
|
|
|
|
column_search_query = st.text_input("Filter by Column/Task Name:", "") |
|
|
|
|
|
matching_columns = [col for col in filtered_data.columns if column_search_query.lower() in col.lower()] |
|
|
|
|
|
st.markdown("## Sortable Results") |
|
st.dataframe(filtered_data[matching_columns]) |
|
|
|
|
|
|
|
|
|
filtered_data.index.name = "Model Name" |
|
|
|
csv = filtered_data.to_csv(index=True) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=csv, |
|
file_name="model_evaluation_results.csv", |
|
mime="text/csv", |
|
) |
|
|
|
|
|
def create_plot(df, x_values, y_values, models=None, title=None): |
|
if models is not None: |
|
df = df[df.index.isin(models)] |
|
|
|
|
|
df = df.dropna(subset=[x_values, y_values]) |
|
|
|
plot_data = pd.DataFrame({ |
|
'Model': df.index, |
|
x_values: df[x_values], |
|
y_values: df[y_values], |
|
}) |
|
|
|
plot_data['color'] = 'purple' |
|
fig = px.scatter(plot_data, x=x_values, y=y_values, color='color', hover_data=['Model'], trendline="ols") |
|
|
|
|
|
if title is None: |
|
title = x_values + " vs. " + y_values |
|
|
|
layout_args = dict( |
|
showlegend=False, |
|
xaxis_title=x_values, |
|
yaxis_title=y_values, |
|
xaxis=dict(), |
|
yaxis=dict(), |
|
title=title, |
|
height=500, |
|
width=1000, |
|
) |
|
fig.update_layout(**layout_args) |
|
|
|
|
|
x_min = df[x_values].min() |
|
x_max = df[x_values].max() |
|
|
|
y_min = df[y_values].min() |
|
y_max = df[y_values].max() |
|
|
|
if x_values.startswith('MMLU'): |
|
fig.add_shape( |
|
type='line', |
|
x0=0.25, x1=0.25, |
|
y0=y_min, y1=y_max, |
|
line=dict( |
|
color='red', |
|
width=2, |
|
dash='dash' |
|
) |
|
) |
|
|
|
if y_values.startswith('MMLU'): |
|
fig.add_shape( |
|
type='line', |
|
x0=x_min, x1=x_max, |
|
y0=0.25, y1=0.25, |
|
line=dict( |
|
color='red', |
|
width=2, |
|
dash='dash' |
|
) |
|
) |
|
|
|
return fig |
|
|
|
|
|
|
|
st.header('Custom scatter plots') |
|
st.write(""" |
|
The scatter plot is useful to identify models that outperform or underperform on a particular task in relation to their size or overall performance. |
|
Identifying these models is a first step to better understand what training strategies result in better performance on a particular task. |
|
""") |
|
st.markdown("***The dashed red line indicates random chance accuracy of 0.25 as the MMLU evaluation is multiple choice with 4 response options.***") |
|
|
|
st.markdown("***") |
|
st.write("As expected, there is a strong positive relationship between the number of parameters and average performance on the MMLU evaluation.") |
|
|
|
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0) |
|
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3) |
|
|
|
if selected_x_column != selected_y_column: |
|
fig = create_plot(filtered_data, selected_x_column, selected_y_column) |
|
st.plotly_chart(fig) |
|
else: |
|
st.write("Please select different columns for the x and y axes.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.header("Compare a Selected Model to the 5 Models Closest in MMLU Average Performance") |
|
st.write(""" |
|
This comparison highlights the nuances in model performance across different tasks. |
|
While the overall MMLU average score provides a general understanding of a model's capabilities, |
|
examining the closest models reveals variations in performance on individual tasks. |
|
Such an analysis can uncover specific strengths and weaknesses and guide further exploration and improvement. |
|
""") |
|
|
|
default_model_name = "GPT-JT-6B-v0" |
|
|
|
default_model_index = filtered_data.index.tolist().index(default_model_name) if default_model_name in filtered_data.index else 0 |
|
selected_model_name = st.selectbox("Select a Model:", filtered_data.index.tolist(), index=default_model_index) |
|
|
|
|
|
closest_models_diffs = filtered_data['MMLU_average'].sub(filtered_data.loc[selected_model_name, 'MMLU_average']).abs() |
|
closest_models = closest_models_diffs.nsmallest(5, keep='first').index.drop_duplicates().tolist() |
|
|
|
|
|
|
|
top_differences_table, top_differences_tasks = find_top_differences_table(filtered_data, selected_model_name, closest_models) |
|
|
|
|
|
st.dataframe(filtered_data.loc[closest_models, top_differences_tasks]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
fig_radar_top_differences = create_radar_chart_unfilled(filtered_data, closest_models, top_differences_tasks) |
|
|
|
|
|
st.plotly_chart(fig_radar_top_differences) |
|
|
|
|
|
st.markdown("## Notable findings and plots") |
|
|
|
st.markdown('### Abstract Algebra Performance') |
|
st.write("Small models showed surprisingly strong performance on the abstract algebra task. A 6 Billion parameter model is tied for the best performance on this task and there are a number of other small models in the top 10.") |
|
plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10) |
|
|
|
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra') |
|
st.plotly_chart(fig) |
|
|
|
|
|
st.markdown("### Moral Scenarios Performance") |
|
st.write(""" |
|
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher. |
|
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help |
|
identify capabilities that are important for moral reasoning. |
|
""") |
|
|
|
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios") |
|
st.plotly_chart(fig) |
|
st.write() |
|
|
|
|
|
|
|
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios') |
|
st.plotly_chart(fig) |
|
|
|
|
|
|
|
|
|
st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***") |
|
|
|
st.markdown(""" |
|
# Citation |
|
|
|
1. Corey Morris (2023). *Exploring the Characteristics of Large Language Models: An Interactive Portal for Analyzing 700+ Open Source Models Across 57 Diverse Evaluation Tasks*. [link](https://huggingface.co/spaces/CoreyMorris/MMLU-by-task-Leaderboard) |
|
|
|
2. Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf. (2023). *Open LLM Leaderboard*. Hugging Face. [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
|
|
3. Gao, Leo et al. (2021). *A framework for few-shot language model evaluation*. Zenodo. [link](https://doi.org/10.5281/zenodo.5371628) |
|
|
|
4. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord. (2018). *Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge*. arXiv. [link](https://arxiv.org/abs/1803.05457) |
|
|
|
5. Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi. (2019). *HellaSwag: Can a Machine Really Finish Your Sentence?*. arXiv. [link](https://arxiv.org/abs/1905.07830) |
|
|
|
6. Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt. (2021). *Measuring Massive Multitask Language Understanding*. arXiv. [link](https://arxiv.org/abs/2009.03300) |
|
|
|
7. Stephanie Lin, Jacob Hilton, Owain Evans. (2022). *TruthfulQA: Measuring How Models Mimic Human Falsehoods*. arXiv. [link](https://arxiv.org/abs/2109.07958) |
|
""") |
|
|