CorvaeOboro commited on
Commit
6ed4042
β€’
1 Parent(s): b3e8fb7

Delete dnnlib/tflib/optimizer.py

Browse files
Files changed (1) hide show
  1. dnnlib/tflib/optimizer.py +0 -372
dnnlib/tflib/optimizer.py DELETED
@@ -1,372 +0,0 @@
1
- ο»Ώ# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # NVIDIA CORPORATION and its licensors retain all intellectual property
4
- # and proprietary rights in and to this software, related documentation
5
- # and any modifications thereto. Any use, reproduction, disclosure or
6
- # distribution of this software and related documentation without an express
7
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
-
9
- """Helper wrapper for a Tensorflow optimizer."""
10
-
11
- import platform
12
- import numpy as np
13
- import tensorflow as tf
14
-
15
- from collections import OrderedDict
16
- from typing import List, Union
17
-
18
- from . import autosummary
19
- from . import tfutil
20
- from .. import util
21
-
22
- from .tfutil import TfExpression, TfExpressionEx
23
-
24
- _collective_ops_warning_printed = False
25
- _collective_ops_group_key = 831766147
26
- _collective_ops_instance_key = 436340067
27
-
28
- class Optimizer:
29
- """A Wrapper for tf.train.Optimizer.
30
-
31
- Automatically takes care of:
32
- - Gradient averaging for multi-GPU training.
33
- - Gradient accumulation for arbitrarily large minibatches.
34
- - Dynamic loss scaling and typecasts for FP16 training.
35
- - Ignoring corrupted gradients that contain NaNs/Infs.
36
- - Reporting statistics.
37
- - Well-chosen default settings.
38
- """
39
-
40
- def __init__(self,
41
- name: str = "Train", # Name string that will appear in TensorFlow graph.
42
- tf_optimizer: str = "tf.train.AdamOptimizer", # Underlying optimizer class.
43
- learning_rate: TfExpressionEx = 0.001, # Learning rate. Can vary over time.
44
- minibatch_multiplier: TfExpressionEx = None, # Treat N consecutive minibatches as one by accumulating gradients.
45
- share: "Optimizer" = None, # Share internal state with a previously created optimizer?
46
- use_loss_scaling: bool = False, # Enable dynamic loss scaling for robust mixed-precision training?
47
- loss_scaling_init: float = 64.0, # Log2 of initial loss scaling factor.
48
- loss_scaling_inc: float = 0.0005, # Log2 of per-minibatch loss scaling increment when there is no overflow.
49
- loss_scaling_dec: float = 1.0, # Log2 of per-minibatch loss scaling decrement when there is an overflow.
50
- report_mem_usage: bool = False, # Report fine-grained memory usage statistics in TensorBoard?
51
- **kwargs):
52
-
53
- # Public fields.
54
- self.name = name
55
- self.learning_rate = learning_rate
56
- self.minibatch_multiplier = minibatch_multiplier
57
- self.id = self.name.replace("/", ".")
58
- self.scope = tf.get_default_graph().unique_name(self.id)
59
- self.optimizer_class = util.get_obj_by_name(tf_optimizer)
60
- self.optimizer_kwargs = dict(kwargs)
61
- self.use_loss_scaling = use_loss_scaling
62
- self.loss_scaling_init = loss_scaling_init
63
- self.loss_scaling_inc = loss_scaling_inc
64
- self.loss_scaling_dec = loss_scaling_dec
65
-
66
- # Private fields.
67
- self._updates_applied = False
68
- self._devices = OrderedDict() # device_name => EasyDict()
69
- self._shared_optimizers = OrderedDict() # device_name => optimizer_class
70
- self._gradient_shapes = None # [shape, ...]
71
- self._report_mem_usage = report_mem_usage
72
-
73
- # Validate arguments.
74
- assert callable(self.optimizer_class)
75
-
76
- # Share internal state if requested.
77
- if share is not None:
78
- assert isinstance(share, Optimizer)
79
- assert self.optimizer_class is share.optimizer_class
80
- assert self.learning_rate is share.learning_rate
81
- assert self.optimizer_kwargs == share.optimizer_kwargs
82
- self._shared_optimizers = share._shared_optimizers # pylint: disable=protected-access
83
-
84
- def _get_device(self, device_name: str):
85
- """Get internal state for the given TensorFlow device."""
86
- tfutil.assert_tf_initialized()
87
- if device_name in self._devices:
88
- return self._devices[device_name]
89
-
90
- # Initialize fields.
91
- device = util.EasyDict()
92
- device.name = device_name
93
- device.optimizer = None # Underlying optimizer: optimizer_class
94
- device.loss_scaling_var = None # Log2 of loss scaling: tf.Variable
95
- device.grad_raw = OrderedDict() # Raw gradients: var => [grad, ...]
96
- device.grad_clean = OrderedDict() # Clean gradients: var => grad
97
- device.grad_acc_vars = OrderedDict() # Accumulation sums: var => tf.Variable
98
- device.grad_acc_count = None # Accumulation counter: tf.Variable
99
- device.grad_acc = OrderedDict() # Accumulated gradients: var => grad
100
-
101
- # Setup TensorFlow objects.
102
- with tfutil.absolute_name_scope(self.scope + "/Devices"), tf.device(device_name), tf.control_dependencies(None):
103
- if device_name not in self._shared_optimizers:
104
- optimizer_name = self.scope.replace("/", "_") + "_opt%d" % len(self._shared_optimizers)
105
- self._shared_optimizers[device_name] = self.optimizer_class(name=optimizer_name, learning_rate=self.learning_rate, **self.optimizer_kwargs)
106
- device.optimizer = self._shared_optimizers[device_name]
107
- if self.use_loss_scaling:
108
- device.loss_scaling_var = tf.Variable(np.float32(self.loss_scaling_init), trainable=False, name="loss_scaling_var")
109
-
110
- # Register device.
111
- self._devices[device_name] = device
112
- return device
113
-
114
- def register_gradients(self, loss: TfExpression, trainable_vars: Union[List, dict]) -> None:
115
- """Register the gradients of the given loss function with respect to the given variables.
116
- Intended to be called once per GPU."""
117
- tfutil.assert_tf_initialized()
118
- assert not self._updates_applied
119
- device = self._get_device(loss.device)
120
-
121
- # Validate trainables.
122
- if isinstance(trainable_vars, dict):
123
- trainable_vars = list(trainable_vars.values()) # allow passing in Network.trainables as vars
124
- assert isinstance(trainable_vars, list) and len(trainable_vars) >= 1
125
- assert all(tfutil.is_tf_expression(expr) for expr in trainable_vars + [loss])
126
- assert all(var.device == device.name for var in trainable_vars)
127
-
128
- # Validate shapes.
129
- if self._gradient_shapes is None:
130
- self._gradient_shapes = [var.shape.as_list() for var in trainable_vars]
131
- assert len(trainable_vars) == len(self._gradient_shapes)
132
- assert all(var.shape.as_list() == var_shape for var, var_shape in zip(trainable_vars, self._gradient_shapes))
133
-
134
- # Report memory usage if requested.
135
- deps = [loss]
136
- if self._report_mem_usage:
137
- self._report_mem_usage = False
138
- try:
139
- with tf.name_scope(self.id + '_mem'), tf.device(device.name), tf.control_dependencies([loss]):
140
- deps.append(autosummary.autosummary(self.id + "/mem_usage_gb", tf.contrib.memory_stats.BytesInUse() / 2**30))
141
- except tf.errors.NotFoundError:
142
- pass
143
-
144
- # Compute gradients.
145
- with tf.name_scope(self.id + "_grad"), tf.device(device.name), tf.control_dependencies(deps):
146
- loss = self.apply_loss_scaling(tf.cast(loss, tf.float32))
147
- gate = tf.train.Optimizer.GATE_NONE # disable gating to reduce memory usage
148
- grad_list = device.optimizer.compute_gradients(loss=loss, var_list=trainable_vars, gate_gradients=gate)
149
-
150
- # Register gradients.
151
- for grad, var in grad_list:
152
- if var not in device.grad_raw:
153
- device.grad_raw[var] = []
154
- device.grad_raw[var].append(grad)
155
-
156
- def apply_updates(self, allow_no_op: bool = False) -> tf.Operation:
157
- """Construct training op to update the registered variables based on their gradients."""
158
- tfutil.assert_tf_initialized()
159
- assert not self._updates_applied
160
- self._updates_applied = True
161
- all_ops = []
162
-
163
- # Check for no-op.
164
- if allow_no_op and len(self._devices) == 0:
165
- with tfutil.absolute_name_scope(self.scope):
166
- return tf.no_op(name='TrainingOp')
167
-
168
- # Clean up gradients.
169
- for device_idx, device in enumerate(self._devices.values()):
170
- with tfutil.absolute_name_scope(self.scope + "/Clean%d" % device_idx), tf.device(device.name):
171
- for var, grad in device.grad_raw.items():
172
-
173
- # Filter out disconnected gradients and convert to float32.
174
- grad = [g for g in grad if g is not None]
175
- grad = [tf.cast(g, tf.float32) for g in grad]
176
-
177
- # Sum within the device.
178
- if len(grad) == 0:
179
- grad = tf.zeros(var.shape) # No gradients => zero.
180
- elif len(grad) == 1:
181
- grad = grad[0] # Single gradient => use as is.
182
- else:
183
- grad = tf.add_n(grad) # Multiple gradients => sum.
184
-
185
- # Scale as needed.
186
- scale = 1.0 / len(device.grad_raw[var]) / len(self._devices)
187
- scale = tf.constant(scale, dtype=tf.float32, name="scale")
188
- if self.minibatch_multiplier is not None:
189
- scale /= tf.cast(self.minibatch_multiplier, tf.float32)
190
- scale = self.undo_loss_scaling(scale)
191
- device.grad_clean[var] = grad * scale
192
-
193
- # Sum gradients across devices.
194
- if len(self._devices) > 1:
195
- with tfutil.absolute_name_scope(self.scope + "/Broadcast"), tf.device(None):
196
- if platform.system() == "Windows": # Windows => NCCL ops are not available.
197
- self._broadcast_fallback()
198
- elif tf.VERSION.startswith("1.15."): # TF 1.15 => NCCL ops are broken: https://github.com/tensorflow/tensorflow/issues/41539
199
- self._broadcast_fallback()
200
- else: # Otherwise => NCCL ops are safe to use.
201
- self._broadcast_nccl()
202
-
203
- # Apply updates separately on each device.
204
- for device_idx, device in enumerate(self._devices.values()):
205
- with tfutil.absolute_name_scope(self.scope + "/Apply%d" % device_idx), tf.device(device.name):
206
- # pylint: disable=cell-var-from-loop
207
-
208
- # Accumulate gradients over time.
209
- if self.minibatch_multiplier is None:
210
- acc_ok = tf.constant(True, name='acc_ok')
211
- device.grad_acc = OrderedDict(device.grad_clean)
212
- else:
213
- # Create variables.
214
- with tf.control_dependencies(None):
215
- for var in device.grad_clean.keys():
216
- device.grad_acc_vars[var] = tf.Variable(tf.zeros(var.shape), trainable=False, name="grad_acc_var")
217
- device.grad_acc_count = tf.Variable(tf.zeros([]), trainable=False, name="grad_acc_count")
218
-
219
- # Track counter.
220
- count_cur = device.grad_acc_count + 1.0
221
- count_inc_op = lambda: tf.assign(device.grad_acc_count, count_cur)
222
- count_reset_op = lambda: tf.assign(device.grad_acc_count, tf.zeros([]))
223
- acc_ok = (count_cur >= tf.cast(self.minibatch_multiplier, tf.float32))
224
- all_ops.append(tf.cond(acc_ok, count_reset_op, count_inc_op))
225
-
226
- # Track gradients.
227
- for var, grad in device.grad_clean.items():
228
- acc_var = device.grad_acc_vars[var]
229
- acc_cur = acc_var + grad
230
- device.grad_acc[var] = acc_cur
231
- with tf.control_dependencies([acc_cur]):
232
- acc_inc_op = lambda: tf.assign(acc_var, acc_cur)
233
- acc_reset_op = lambda: tf.assign(acc_var, tf.zeros(var.shape))
234
- all_ops.append(tf.cond(acc_ok, acc_reset_op, acc_inc_op))
235
-
236
- # No overflow => apply gradients.
237
- all_ok = tf.reduce_all(tf.stack([acc_ok] + [tf.reduce_all(tf.is_finite(g)) for g in device.grad_acc.values()]))
238
- apply_op = lambda: device.optimizer.apply_gradients([(tf.cast(grad, var.dtype), var) for var, grad in device.grad_acc.items()])
239
- all_ops.append(tf.cond(all_ok, apply_op, tf.no_op))
240
-
241
- # Adjust loss scaling.
242
- if self.use_loss_scaling:
243
- ls_inc_op = lambda: tf.assign_add(device.loss_scaling_var, self.loss_scaling_inc)
244
- ls_dec_op = lambda: tf.assign_sub(device.loss_scaling_var, self.loss_scaling_dec)
245
- ls_update_op = lambda: tf.group(tf.cond(all_ok, ls_inc_op, ls_dec_op))
246
- all_ops.append(tf.cond(acc_ok, ls_update_op, tf.no_op))
247
-
248
- # Last device => report statistics.
249
- if device_idx == len(self._devices) - 1:
250
- all_ops.append(autosummary.autosummary(self.id + "/learning_rate", tf.convert_to_tensor(self.learning_rate)))
251
- all_ops.append(autosummary.autosummary(self.id + "/overflow_frequency", tf.where(all_ok, 0, 1), condition=acc_ok))
252
- if self.use_loss_scaling:
253
- all_ops.append(autosummary.autosummary(self.id + "/loss_scaling_log2", device.loss_scaling_var))
254
-
255
- # Initialize variables.
256
- self.reset_optimizer_state()
257
- if self.use_loss_scaling:
258
- tfutil.init_uninitialized_vars([device.loss_scaling_var for device in self._devices.values()])
259
- if self.minibatch_multiplier is not None:
260
- tfutil.run([var.initializer for device in self._devices.values() for var in list(device.grad_acc_vars.values()) + [device.grad_acc_count]])
261
-
262
- # Group everything into a single op.
263
- with tfutil.absolute_name_scope(self.scope):
264
- return tf.group(*all_ops, name="TrainingOp")
265
-
266
- def reset_optimizer_state(self) -> None:
267
- """Reset internal state of the underlying optimizer."""
268
- tfutil.assert_tf_initialized()
269
- tfutil.run([var.initializer for device in self._devices.values() for var in device.optimizer.variables()])
270
-
271
- def get_loss_scaling_var(self, device: str) -> Union[tf.Variable, None]:
272
- """Get or create variable representing log2 of the current dynamic loss scaling factor."""
273
- return self._get_device(device).loss_scaling_var
274
-
275
- def apply_loss_scaling(self, value: TfExpression) -> TfExpression:
276
- """Apply dynamic loss scaling for the given expression."""
277
- assert tfutil.is_tf_expression(value)
278
- if not self.use_loss_scaling:
279
- return value
280
- return value * tfutil.exp2(self.get_loss_scaling_var(value.device))
281
-
282
- def undo_loss_scaling(self, value: TfExpression) -> TfExpression:
283
- """Undo the effect of dynamic loss scaling for the given expression."""
284
- assert tfutil.is_tf_expression(value)
285
- if not self.use_loss_scaling:
286
- return value
287
- return value * tfutil.exp2(-self.get_loss_scaling_var(value.device)) # pylint: disable=invalid-unary-operand-type
288
-
289
- def _broadcast_nccl(self):
290
- """Sum gradients across devices using NCCL ops (fast path)."""
291
- from tensorflow.python.ops import nccl_ops # pylint: disable=no-name-in-module
292
- for all_vars in zip(*[device.grad_clean.keys() for device in self._devices.values()]):
293
- if any(x.shape.num_elements() > 0 for x in all_vars):
294
- all_grads = [device.grad_clean[var] for device, var in zip(self._devices.values(), all_vars)]
295
- all_grads = nccl_ops.all_sum(all_grads)
296
- for device, var, grad in zip(self._devices.values(), all_vars, all_grads):
297
- device.grad_clean[var] = grad
298
-
299
- def _broadcast_fallback(self):
300
- """Sum gradients across devices using TensorFlow collective ops (slow fallback path)."""
301
- from tensorflow.python.ops import collective_ops # pylint: disable=no-name-in-module
302
- global _collective_ops_warning_printed, _collective_ops_group_key, _collective_ops_instance_key
303
- if all(x.shape.num_elements() == 0 for device in self._devices.values() for x in device.grad_clean.values()):
304
- return
305
- if not _collective_ops_warning_printed:
306
- print("------------------------------------------------------------------------")
307
- print("WARNING: Using slow fallback implementation for inter-GPU communication.")
308
- print("Please use TensorFlow 1.14 on Linux for optimal training performance.")
309
- print("------------------------------------------------------------------------")
310
- _collective_ops_warning_printed = True
311
- for device in self._devices.values():
312
- with tf.device(device.name):
313
- combo = [tf.reshape(x, [x.shape.num_elements()]) for x in device.grad_clean.values()]
314
- combo = tf.concat(combo, axis=0)
315
- combo = collective_ops.all_reduce(combo, merge_op='Add', final_op='Id',
316
- group_size=len(self._devices), group_key=_collective_ops_group_key,
317
- instance_key=_collective_ops_instance_key)
318
- cur_ofs = 0
319
- for var, grad_old in device.grad_clean.items():
320
- grad_new = tf.reshape(combo[cur_ofs : cur_ofs + grad_old.shape.num_elements()], grad_old.shape)
321
- cur_ofs += grad_old.shape.num_elements()
322
- device.grad_clean[var] = grad_new
323
- _collective_ops_instance_key += 1
324
-
325
-
326
- class SimpleAdam:
327
- """Simplified version of tf.train.AdamOptimizer that behaves identically when used with dnnlib.tflib.Optimizer."""
328
-
329
- def __init__(self, name="Adam", learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
330
- self.name = name
331
- self.learning_rate = learning_rate
332
- self.beta1 = beta1
333
- self.beta2 = beta2
334
- self.epsilon = epsilon
335
- self.all_state_vars = []
336
-
337
- def variables(self):
338
- return self.all_state_vars
339
-
340
- def compute_gradients(self, loss, var_list, gate_gradients=tf.train.Optimizer.GATE_NONE):
341
- assert gate_gradients == tf.train.Optimizer.GATE_NONE
342
- return list(zip(tf.gradients(loss, var_list), var_list))
343
-
344
- def apply_gradients(self, grads_and_vars):
345
- with tf.name_scope(self.name):
346
- state_vars = []
347
- update_ops = []
348
-
349
- # Adjust learning rate to deal with startup bias.
350
- with tf.control_dependencies(None):
351
- b1pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
352
- b2pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
353
- state_vars += [b1pow_var, b2pow_var]
354
- b1pow_new = b1pow_var * self.beta1
355
- b2pow_new = b2pow_var * self.beta2
356
- update_ops += [tf.assign(b1pow_var, b1pow_new), tf.assign(b2pow_var, b2pow_new)]
357
- lr_new = self.learning_rate * tf.sqrt(1 - b2pow_new) / (1 - b1pow_new)
358
-
359
- # Construct ops to update each variable.
360
- for grad, var in grads_and_vars:
361
- with tf.control_dependencies(None):
362
- m_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
363
- v_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
364
- state_vars += [m_var, v_var]
365
- m_new = self.beta1 * m_var + (1 - self.beta1) * grad
366
- v_new = self.beta2 * v_var + (1 - self.beta2) * tf.square(grad)
367
- var_delta = lr_new * m_new / (tf.sqrt(v_new) + self.epsilon)
368
- update_ops += [tf.assign(m_var, m_new), tf.assign(v_var, v_new), tf.assign_sub(var, var_delta)]
369
-
370
- # Group everything together.
371
- self.all_state_vars += state_vars
372
- return tf.group(*update_ops)