Spaces:
Runtime error
Runtime error
CorvaeOboro
commited on
Commit
β’
f87aee2
1
Parent(s):
d0a89cf
Upload upfirdn2d.py
Browse files- torch_utils/ops/upfirdn2d.py +384 -0
torch_utils/ops/upfirdn2d.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Custom PyTorch ops for efficient resampling of 2D images."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import warnings
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import traceback
|
16 |
+
|
17 |
+
from .. import custom_ops
|
18 |
+
from .. import misc
|
19 |
+
from . import conv2d_gradfix
|
20 |
+
|
21 |
+
#----------------------------------------------------------------------------
|
22 |
+
|
23 |
+
_inited = False
|
24 |
+
_plugin = None
|
25 |
+
|
26 |
+
def _init():
|
27 |
+
global _inited, _plugin
|
28 |
+
if not _inited:
|
29 |
+
sources = ['upfirdn2d.cpp', 'upfirdn2d.cu']
|
30 |
+
sources = [os.path.join(os.path.dirname(__file__), s) for s in sources]
|
31 |
+
try:
|
32 |
+
_plugin = custom_ops.get_plugin('upfirdn2d_plugin', sources=sources, extra_cuda_cflags=['--use_fast_math'])
|
33 |
+
except:
|
34 |
+
warnings.warn('Failed to build CUDA kernels for upfirdn2d. Falling back to slow reference implementation. Details:\n\n' + traceback.format_exc())
|
35 |
+
return _plugin is not None
|
36 |
+
|
37 |
+
def _parse_scaling(scaling):
|
38 |
+
if isinstance(scaling, int):
|
39 |
+
scaling = [scaling, scaling]
|
40 |
+
assert isinstance(scaling, (list, tuple))
|
41 |
+
assert all(isinstance(x, int) for x in scaling)
|
42 |
+
sx, sy = scaling
|
43 |
+
assert sx >= 1 and sy >= 1
|
44 |
+
return sx, sy
|
45 |
+
|
46 |
+
def _parse_padding(padding):
|
47 |
+
if isinstance(padding, int):
|
48 |
+
padding = [padding, padding]
|
49 |
+
assert isinstance(padding, (list, tuple))
|
50 |
+
assert all(isinstance(x, int) for x in padding)
|
51 |
+
if len(padding) == 2:
|
52 |
+
padx, pady = padding
|
53 |
+
padding = [padx, padx, pady, pady]
|
54 |
+
padx0, padx1, pady0, pady1 = padding
|
55 |
+
return padx0, padx1, pady0, pady1
|
56 |
+
|
57 |
+
def _get_filter_size(f):
|
58 |
+
if f is None:
|
59 |
+
return 1, 1
|
60 |
+
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
61 |
+
fw = f.shape[-1]
|
62 |
+
fh = f.shape[0]
|
63 |
+
with misc.suppress_tracer_warnings():
|
64 |
+
fw = int(fw)
|
65 |
+
fh = int(fh)
|
66 |
+
misc.assert_shape(f, [fh, fw][:f.ndim])
|
67 |
+
assert fw >= 1 and fh >= 1
|
68 |
+
return fw, fh
|
69 |
+
|
70 |
+
#----------------------------------------------------------------------------
|
71 |
+
|
72 |
+
def setup_filter(f, device=torch.device('cpu'), normalize=True, flip_filter=False, gain=1, separable=None):
|
73 |
+
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
f: Torch tensor, numpy array, or python list of the shape
|
77 |
+
`[filter_height, filter_width]` (non-separable),
|
78 |
+
`[filter_taps]` (separable),
|
79 |
+
`[]` (impulse), or
|
80 |
+
`None` (identity).
|
81 |
+
device: Result device (default: cpu).
|
82 |
+
normalize: Normalize the filter so that it retains the magnitude
|
83 |
+
for constant input signal (DC)? (default: True).
|
84 |
+
flip_filter: Flip the filter? (default: False).
|
85 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
86 |
+
separable: Return a separable filter? (default: select automatically).
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
Float32 tensor of the shape
|
90 |
+
`[filter_height, filter_width]` (non-separable) or
|
91 |
+
`[filter_taps]` (separable).
|
92 |
+
"""
|
93 |
+
# Validate.
|
94 |
+
if f is None:
|
95 |
+
f = 1
|
96 |
+
f = torch.as_tensor(f, dtype=torch.float32)
|
97 |
+
assert f.ndim in [0, 1, 2]
|
98 |
+
assert f.numel() > 0
|
99 |
+
if f.ndim == 0:
|
100 |
+
f = f[np.newaxis]
|
101 |
+
|
102 |
+
# Separable?
|
103 |
+
if separable is None:
|
104 |
+
separable = (f.ndim == 1 and f.numel() >= 8)
|
105 |
+
if f.ndim == 1 and not separable:
|
106 |
+
f = f.ger(f)
|
107 |
+
assert f.ndim == (1 if separable else 2)
|
108 |
+
|
109 |
+
# Apply normalize, flip, gain, and device.
|
110 |
+
if normalize:
|
111 |
+
f /= f.sum()
|
112 |
+
if flip_filter:
|
113 |
+
f = f.flip(list(range(f.ndim)))
|
114 |
+
f = f * (gain ** (f.ndim / 2))
|
115 |
+
f = f.to(device=device)
|
116 |
+
return f
|
117 |
+
|
118 |
+
#----------------------------------------------------------------------------
|
119 |
+
|
120 |
+
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
121 |
+
r"""Pad, upsample, filter, and downsample a batch of 2D images.
|
122 |
+
|
123 |
+
Performs the following sequence of operations for each channel:
|
124 |
+
|
125 |
+
1. Upsample the image by inserting N-1 zeros after each pixel (`up`).
|
126 |
+
|
127 |
+
2. Pad the image with the specified number of zeros on each side (`padding`).
|
128 |
+
Negative padding corresponds to cropping the image.
|
129 |
+
|
130 |
+
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it
|
131 |
+
so that the footprint of all output pixels lies within the input image.
|
132 |
+
|
133 |
+
4. Downsample the image by keeping every Nth pixel (`down`).
|
134 |
+
|
135 |
+
This sequence of operations bears close resemblance to scipy.signal.upfirdn().
|
136 |
+
The fused op is considerably more efficient than performing the same calculation
|
137 |
+
using standard PyTorch ops. It supports gradients of arbitrary order.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
x: Float32/float64/float16 input tensor of the shape
|
141 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
142 |
+
f: Float32 FIR filter of the shape
|
143 |
+
`[filter_height, filter_width]` (non-separable),
|
144 |
+
`[filter_taps]` (separable), or
|
145 |
+
`None` (identity).
|
146 |
+
up: Integer upsampling factor. Can be a single int or a list/tuple
|
147 |
+
`[x, y]` (default: 1).
|
148 |
+
down: Integer downsampling factor. Can be a single int or a list/tuple
|
149 |
+
`[x, y]` (default: 1).
|
150 |
+
padding: Padding with respect to the upsampled image. Can be a single number
|
151 |
+
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
152 |
+
(default: 0).
|
153 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
154 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
155 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
159 |
+
"""
|
160 |
+
assert isinstance(x, torch.Tensor)
|
161 |
+
assert impl in ['ref', 'cuda']
|
162 |
+
if impl == 'cuda' and x.device.type == 'cuda' and _init():
|
163 |
+
return _upfirdn2d_cuda(up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain).apply(x, f)
|
164 |
+
return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain)
|
165 |
+
|
166 |
+
#----------------------------------------------------------------------------
|
167 |
+
|
168 |
+
@misc.profiled_function
|
169 |
+
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
|
170 |
+
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.
|
171 |
+
"""
|
172 |
+
# Validate arguments.
|
173 |
+
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
174 |
+
if f is None:
|
175 |
+
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
176 |
+
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
177 |
+
assert f.dtype == torch.float32 and not f.requires_grad
|
178 |
+
batch_size, num_channels, in_height, in_width = x.shape
|
179 |
+
upx, upy = _parse_scaling(up)
|
180 |
+
downx, downy = _parse_scaling(down)
|
181 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
182 |
+
|
183 |
+
# Upsample by inserting zeros.
|
184 |
+
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
|
185 |
+
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
|
186 |
+
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
|
187 |
+
|
188 |
+
# Pad or crop.
|
189 |
+
x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)])
|
190 |
+
x = x[:, :, max(-pady0, 0) : x.shape[2] - max(-pady1, 0), max(-padx0, 0) : x.shape[3] - max(-padx1, 0)]
|
191 |
+
|
192 |
+
# Setup filter.
|
193 |
+
f = f * (gain ** (f.ndim / 2))
|
194 |
+
f = f.to(x.dtype)
|
195 |
+
if not flip_filter:
|
196 |
+
f = f.flip(list(range(f.ndim)))
|
197 |
+
|
198 |
+
# Convolve with the filter.
|
199 |
+
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
|
200 |
+
if f.ndim == 4:
|
201 |
+
x = conv2d_gradfix.conv2d(input=x, weight=f, groups=num_channels)
|
202 |
+
else:
|
203 |
+
x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
|
204 |
+
x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
|
205 |
+
|
206 |
+
# Downsample by throwing away pixels.
|
207 |
+
x = x[:, :, ::downy, ::downx]
|
208 |
+
return x
|
209 |
+
|
210 |
+
#----------------------------------------------------------------------------
|
211 |
+
|
212 |
+
_upfirdn2d_cuda_cache = dict()
|
213 |
+
|
214 |
+
def _upfirdn2d_cuda(up=1, down=1, padding=0, flip_filter=False, gain=1):
|
215 |
+
"""Fast CUDA implementation of `upfirdn2d()` using custom ops.
|
216 |
+
"""
|
217 |
+
# Parse arguments.
|
218 |
+
upx, upy = _parse_scaling(up)
|
219 |
+
downx, downy = _parse_scaling(down)
|
220 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
221 |
+
|
222 |
+
# Lookup from cache.
|
223 |
+
key = (upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain)
|
224 |
+
if key in _upfirdn2d_cuda_cache:
|
225 |
+
return _upfirdn2d_cuda_cache[key]
|
226 |
+
|
227 |
+
# Forward op.
|
228 |
+
class Upfirdn2dCuda(torch.autograd.Function):
|
229 |
+
@staticmethod
|
230 |
+
def forward(ctx, x, f): # pylint: disable=arguments-differ
|
231 |
+
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
232 |
+
if f is None:
|
233 |
+
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
234 |
+
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
235 |
+
y = x
|
236 |
+
if f.ndim == 2:
|
237 |
+
y = _plugin.upfirdn2d(y, f, upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain)
|
238 |
+
else:
|
239 |
+
y = _plugin.upfirdn2d(y, f.unsqueeze(0), upx, 1, downx, 1, padx0, padx1, 0, 0, flip_filter, np.sqrt(gain))
|
240 |
+
y = _plugin.upfirdn2d(y, f.unsqueeze(1), 1, upy, 1, downy, 0, 0, pady0, pady1, flip_filter, np.sqrt(gain))
|
241 |
+
ctx.save_for_backward(f)
|
242 |
+
ctx.x_shape = x.shape
|
243 |
+
return y
|
244 |
+
|
245 |
+
@staticmethod
|
246 |
+
def backward(ctx, dy): # pylint: disable=arguments-differ
|
247 |
+
f, = ctx.saved_tensors
|
248 |
+
_, _, ih, iw = ctx.x_shape
|
249 |
+
_, _, oh, ow = dy.shape
|
250 |
+
fw, fh = _get_filter_size(f)
|
251 |
+
p = [
|
252 |
+
fw - padx0 - 1,
|
253 |
+
iw * upx - ow * downx + padx0 - upx + 1,
|
254 |
+
fh - pady0 - 1,
|
255 |
+
ih * upy - oh * downy + pady0 - upy + 1,
|
256 |
+
]
|
257 |
+
dx = None
|
258 |
+
df = None
|
259 |
+
|
260 |
+
if ctx.needs_input_grad[0]:
|
261 |
+
dx = _upfirdn2d_cuda(up=down, down=up, padding=p, flip_filter=(not flip_filter), gain=gain).apply(dy, f)
|
262 |
+
|
263 |
+
assert not ctx.needs_input_grad[1]
|
264 |
+
return dx, df
|
265 |
+
|
266 |
+
# Add to cache.
|
267 |
+
_upfirdn2d_cuda_cache[key] = Upfirdn2dCuda
|
268 |
+
return Upfirdn2dCuda
|
269 |
+
|
270 |
+
#----------------------------------------------------------------------------
|
271 |
+
|
272 |
+
def filter2d(x, f, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
273 |
+
r"""Filter a batch of 2D images using the given 2D FIR filter.
|
274 |
+
|
275 |
+
By default, the result is padded so that its shape matches the input.
|
276 |
+
User-specified padding is applied on top of that, with negative values
|
277 |
+
indicating cropping. Pixels outside the image are assumed to be zero.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
x: Float32/float64/float16 input tensor of the shape
|
281 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
282 |
+
f: Float32 FIR filter of the shape
|
283 |
+
`[filter_height, filter_width]` (non-separable),
|
284 |
+
`[filter_taps]` (separable), or
|
285 |
+
`None` (identity).
|
286 |
+
padding: Padding with respect to the output. Can be a single number or a
|
287 |
+
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
288 |
+
(default: 0).
|
289 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
290 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
291 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
295 |
+
"""
|
296 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
297 |
+
fw, fh = _get_filter_size(f)
|
298 |
+
p = [
|
299 |
+
padx0 + fw // 2,
|
300 |
+
padx1 + (fw - 1) // 2,
|
301 |
+
pady0 + fh // 2,
|
302 |
+
pady1 + (fh - 1) // 2,
|
303 |
+
]
|
304 |
+
return upfirdn2d(x, f, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
|
305 |
+
|
306 |
+
#----------------------------------------------------------------------------
|
307 |
+
|
308 |
+
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
309 |
+
r"""Upsample a batch of 2D images using the given 2D FIR filter.
|
310 |
+
|
311 |
+
By default, the result is padded so that its shape is a multiple of the input.
|
312 |
+
User-specified padding is applied on top of that, with negative values
|
313 |
+
indicating cropping. Pixels outside the image are assumed to be zero.
|
314 |
+
|
315 |
+
Args:
|
316 |
+
x: Float32/float64/float16 input tensor of the shape
|
317 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
318 |
+
f: Float32 FIR filter of the shape
|
319 |
+
`[filter_height, filter_width]` (non-separable),
|
320 |
+
`[filter_taps]` (separable), or
|
321 |
+
`None` (identity).
|
322 |
+
up: Integer upsampling factor. Can be a single int or a list/tuple
|
323 |
+
`[x, y]` (default: 1).
|
324 |
+
padding: Padding with respect to the output. Can be a single number or a
|
325 |
+
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
326 |
+
(default: 0).
|
327 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
328 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
329 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
330 |
+
|
331 |
+
Returns:
|
332 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
333 |
+
"""
|
334 |
+
upx, upy = _parse_scaling(up)
|
335 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
336 |
+
fw, fh = _get_filter_size(f)
|
337 |
+
p = [
|
338 |
+
padx0 + (fw + upx - 1) // 2,
|
339 |
+
padx1 + (fw - upx) // 2,
|
340 |
+
pady0 + (fh + upy - 1) // 2,
|
341 |
+
pady1 + (fh - upy) // 2,
|
342 |
+
]
|
343 |
+
return upfirdn2d(x, f, up=up, padding=p, flip_filter=flip_filter, gain=gain*upx*upy, impl=impl)
|
344 |
+
|
345 |
+
#----------------------------------------------------------------------------
|
346 |
+
|
347 |
+
def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
348 |
+
r"""Downsample a batch of 2D images using the given 2D FIR filter.
|
349 |
+
|
350 |
+
By default, the result is padded so that its shape is a fraction of the input.
|
351 |
+
User-specified padding is applied on top of that, with negative values
|
352 |
+
indicating cropping. Pixels outside the image are assumed to be zero.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
x: Float32/float64/float16 input tensor of the shape
|
356 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
357 |
+
f: Float32 FIR filter of the shape
|
358 |
+
`[filter_height, filter_width]` (non-separable),
|
359 |
+
`[filter_taps]` (separable), or
|
360 |
+
`None` (identity).
|
361 |
+
down: Integer downsampling factor. Can be a single int or a list/tuple
|
362 |
+
`[x, y]` (default: 1).
|
363 |
+
padding: Padding with respect to the input. Can be a single number or a
|
364 |
+
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
365 |
+
(default: 0).
|
366 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
367 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
368 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
372 |
+
"""
|
373 |
+
downx, downy = _parse_scaling(down)
|
374 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
375 |
+
fw, fh = _get_filter_size(f)
|
376 |
+
p = [
|
377 |
+
padx0 + (fw - downx + 1) // 2,
|
378 |
+
padx1 + (fw - downx) // 2,
|
379 |
+
pady0 + (fh - downy + 1) // 2,
|
380 |
+
pady1 + (fh - downy) // 2,
|
381 |
+
]
|
382 |
+
return upfirdn2d(x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
|
383 |
+
|
384 |
+
#----------------------------------------------------------------------------
|