|
from typing import Any, Dict, Optional |
|
import torch |
|
from diffusers.models.attention_processor import Attention |
|
|
|
def construct_pix2pix_attention(hidden_states_dim, norm_type="none"): |
|
if norm_type == "layernorm": |
|
norm = torch.nn.LayerNorm(hidden_states_dim) |
|
else: |
|
norm = torch.nn.Identity() |
|
attention = Attention( |
|
query_dim=hidden_states_dim, |
|
heads=8, |
|
dim_head=hidden_states_dim // 8, |
|
bias=True, |
|
) |
|
|
|
attention.xformers_not_supported = True |
|
return norm, attention |
|
|
|
class ExtraAttnProc(torch.nn.Module): |
|
def __init__( |
|
self, |
|
chained_proc, |
|
enabled=False, |
|
name=None, |
|
mode='extract', |
|
with_proj_in=False, |
|
proj_in_dim=768, |
|
target_dim=None, |
|
pixel_wise_crosspond=False, |
|
norm_type="none", |
|
crosspond_effect_on="all", |
|
crosspond_chain_pos="parralle", |
|
simple_3d=False, |
|
views=4, |
|
) -> None: |
|
super().__init__() |
|
self.enabled = enabled |
|
self.chained_proc = chained_proc |
|
self.name = name |
|
self.mode = mode |
|
self.with_proj_in=with_proj_in |
|
self.proj_in_dim = proj_in_dim |
|
self.target_dim = target_dim or proj_in_dim |
|
self.hidden_states_dim = self.target_dim |
|
self.pixel_wise_crosspond = pixel_wise_crosspond |
|
self.crosspond_effect_on = crosspond_effect_on |
|
self.crosspond_chain_pos = crosspond_chain_pos |
|
self.views = views |
|
self.simple_3d = simple_3d |
|
if self.with_proj_in and self.enabled: |
|
self.in_linear = torch.nn.Linear(self.proj_in_dim, self.target_dim, bias=False) |
|
if self.target_dim == self.proj_in_dim: |
|
self.in_linear.weight.data = torch.eye(proj_in_dim) |
|
else: |
|
self.in_linear = None |
|
if self.pixel_wise_crosspond and self.enabled: |
|
self.crosspond_norm, self.crosspond_attention = construct_pix2pix_attention(self.hidden_states_dim, norm_type=norm_type) |
|
|
|
def do_crosspond_attention(self, hidden_states: torch.FloatTensor, other_states: torch.FloatTensor): |
|
hidden_states = self.crosspond_norm(hidden_states) |
|
|
|
batch, L, D = hidden_states.shape |
|
assert hidden_states.shape == other_states.shape, f"got {hidden_states.shape} and {other_states.shape}" |
|
|
|
hidden_states = hidden_states.reshape(batch * L, 1, D) |
|
other_states = other_states.reshape(batch * L, 1, D) |
|
hidden_states_catted = other_states |
|
hidden_states = self.crosspond_attention( |
|
hidden_states, |
|
encoder_hidden_states=hidden_states_catted, |
|
) |
|
return hidden_states.reshape(batch, L, D) |
|
|
|
def __call__( |
|
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, |
|
ref_dict: dict = None, mode=None, **kwargs |
|
) -> Any: |
|
if not self.enabled: |
|
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
assert ref_dict is not None |
|
if (mode or self.mode) == 'extract': |
|
ref_dict[self.name] = hidden_states |
|
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
if self.pixel_wise_crosspond and self.crosspond_chain_pos == "after": |
|
ref_dict[self.name] = hidden_states1 |
|
return hidden_states1 |
|
elif (mode or self.mode) == 'inject': |
|
ref_state = ref_dict.pop(self.name) |
|
if self.with_proj_in: |
|
ref_state = self.in_linear(ref_state) |
|
|
|
B, L, D = ref_state.shape |
|
if hidden_states.shape[0] == B: |
|
modalities = 1 |
|
views = 1 |
|
else: |
|
modalities = hidden_states.shape[0] // B // self.views |
|
views = self.views |
|
if self.pixel_wise_crosspond: |
|
if self.crosspond_effect_on == "all": |
|
ref_state = ref_state[:, None].expand(-1, modalities * views, -1, -1).reshape(-1, *ref_state.shape[-2:]) |
|
|
|
if self.crosspond_chain_pos == "before": |
|
hidden_states = hidden_states + self.do_crosspond_attention(hidden_states, ref_state) |
|
|
|
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
|
|
if self.crosspond_chain_pos == "parralle": |
|
hidden_states1 = hidden_states1 + self.do_crosspond_attention(hidden_states, ref_state) |
|
|
|
if self.crosspond_chain_pos == "after": |
|
hidden_states1 = hidden_states1 + self.do_crosspond_attention(hidden_states1, ref_state) |
|
return hidden_states1 |
|
else: |
|
assert self.crosspond_effect_on == "first" |
|
|
|
|
|
ref_state = ref_state[:, None].expand(-1, modalities, -1, -1).reshape(-1, ref_state.shape[-2], ref_state.shape[-1]) |
|
|
|
def do_paritial_crosspond(hidden_states, ref_state): |
|
first_view_hidden_states = hidden_states.view(-1, views, hidden_states.shape[1], hidden_states.shape[2])[:, 0] |
|
hidden_states2 = self.do_crosspond_attention(first_view_hidden_states, ref_state) |
|
hidden_states2_padded = torch.zeros_like(hidden_states).reshape(-1, views, hidden_states.shape[1], hidden_states.shape[2]) |
|
hidden_states2_padded[:, 0] = hidden_states2 |
|
hidden_states2_padded = hidden_states2_padded.reshape(-1, hidden_states.shape[1], hidden_states.shape[2]) |
|
return hidden_states2_padded |
|
|
|
if self.crosspond_chain_pos == "before": |
|
hidden_states = hidden_states + do_paritial_crosspond(hidden_states, ref_state) |
|
|
|
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
if self.crosspond_chain_pos == "parralle": |
|
hidden_states1 = hidden_states1 + do_paritial_crosspond(hidden_states, ref_state) |
|
if self.crosspond_chain_pos == "after": |
|
hidden_states1 = hidden_states1 + do_paritial_crosspond(hidden_states1, ref_state) |
|
return hidden_states1 |
|
elif self.simple_3d: |
|
B, L, C = encoder_hidden_states.shape |
|
mv = self.views |
|
encoder_hidden_states = encoder_hidden_states.reshape(B // mv, mv, L, C) |
|
ref_state = ref_state[:, None] |
|
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_state], dim=1) |
|
encoder_hidden_states = encoder_hidden_states.reshape(B // mv, 1, (mv+1) * L, C) |
|
encoder_hidden_states = encoder_hidden_states.repeat(1, mv, 1, 1).reshape(-1, (mv+1) * L, C) |
|
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
else: |
|
ref_state = ref_state[:, None].expand(-1, modalities * views, -1, -1).reshape(-1, ref_state.shape[-2], ref_state.shape[-1]) |
|
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_state], dim=1) |
|
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
else: |
|
raise NotImplementedError("mode or self.mode is required to be 'extract' or 'inject'") |
|
|
|
def add_extra_processor(model: torch.nn.Module, enable_filter=lambda x:True, **kwargs): |
|
return_dict = torch.nn.ModuleDict() |
|
proj_in_dim = kwargs.get('proj_in_dim', False) |
|
kwargs.pop('proj_in_dim', None) |
|
|
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
if "ref_unet" not in (sub_name + name): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
new_processor = ExtraAttnProc( |
|
chained_proc=module.get_processor(), |
|
enabled=enable_filter(f"{name}.processor"), |
|
name=f"{name}.processor", |
|
proj_in_dim=proj_in_dim if proj_in_dim else module.cross_attention_dim, |
|
target_dim=module.cross_attention_dim, |
|
**kwargs |
|
) |
|
module.set_processor(new_processor) |
|
return_dict[f"{name}.processor".replace(".", "__")] = new_processor |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
return return_dict |
|
|
|
def switch_extra_processor(model, enable_filter=lambda x:True): |
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, ExtraAttnProc): |
|
module.enabled = enable_filter(name) |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
|
|
class multiviewAttnProc(torch.nn.Module): |
|
def __init__( |
|
self, |
|
chained_proc, |
|
enabled=False, |
|
name=None, |
|
hidden_states_dim=None, |
|
chain_pos="parralle", |
|
num_modalities=1, |
|
views=4, |
|
base_img_size=64, |
|
) -> None: |
|
super().__init__() |
|
self.enabled = enabled |
|
self.chained_proc = chained_proc |
|
self.name = name |
|
self.hidden_states_dim = hidden_states_dim |
|
self.num_modalities = num_modalities |
|
self.views = views |
|
self.base_img_size = base_img_size |
|
self.chain_pos = chain_pos |
|
self.diff_joint_attn = True |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
**kwargs |
|
) -> torch.Tensor: |
|
if not self.enabled: |
|
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
|
|
B, L, C = hidden_states.shape |
|
mv = self.views |
|
hidden_states = hidden_states.reshape(B // mv, mv, L, C).reshape(-1, mv * L, C) |
|
hidden_states = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
return hidden_states.reshape(B // mv, mv, L, C).reshape(-1, L, C) |
|
|
|
def add_multiview_processor(model: torch.nn.Module, enable_filter=lambda x:True, **kwargs): |
|
return_dict = torch.nn.ModuleDict() |
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
if "ref_unet" not in (sub_name + name): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
new_processor = multiviewAttnProc( |
|
chained_proc=module.get_processor(), |
|
enabled=enable_filter(f"{name}.processor"), |
|
name=f"{name}.processor", |
|
hidden_states_dim=module.inner_dim, |
|
**kwargs |
|
) |
|
module.set_processor(new_processor) |
|
return_dict[f"{name}.processor".replace(".", "__")] = new_processor |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
|
|
return return_dict |
|
|
|
def switch_multiview_processor(model, enable_filter=lambda x:True): |
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
processor = module.get_processor() |
|
if isinstance(processor, multiviewAttnProc): |
|
processor.enabled = enable_filter(f"{name}.processor") |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
|
|
class NNModuleWrapper(torch.nn.Module): |
|
def __init__(self, module): |
|
super().__init__() |
|
self.module = module |
|
|
|
def forward(self, *args, **kwargs): |
|
return self.module(*args, **kwargs) |
|
|
|
def __getattr__(self, name: str): |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
return getattr(self.module, name) |
|
|
|
class AttnProcessorSwitch(torch.nn.Module): |
|
def __init__( |
|
self, |
|
proc_dict: dict, |
|
enabled_proc="default", |
|
name=None, |
|
switch_name="default_switch", |
|
): |
|
super().__init__() |
|
self.proc_dict = torch.nn.ModuleDict({k: (v if isinstance(v, torch.nn.Module) else NNModuleWrapper(v)) for k, v in proc_dict.items()}) |
|
self.enabled_proc = enabled_proc |
|
self.name = name |
|
self.switch_name = switch_name |
|
self.choose_module(enabled_proc) |
|
|
|
def choose_module(self, enabled_proc): |
|
self.enabled_proc = enabled_proc |
|
assert enabled_proc in self.proc_dict.keys() |
|
|
|
def __call__( |
|
self, |
|
*args, |
|
**kwargs |
|
) -> torch.FloatTensor: |
|
used_proc = self.proc_dict[self.enabled_proc] |
|
return used_proc(*args, **kwargs) |
|
|
|
def add_switch(model: torch.nn.Module, module_filter=lambda x:True, switch_dict_fn=lambda x: {"default": x}, switch_name="default_switch", enabled_proc="default"): |
|
return_dict = torch.nn.ModuleDict() |
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
if "ref_unet" not in (sub_name + name): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
processor = module.get_processor() |
|
if module_filter(processor): |
|
proc_dict = switch_dict_fn(processor) |
|
new_processor = AttnProcessorSwitch( |
|
proc_dict=proc_dict, |
|
enabled_proc=enabled_proc, |
|
name=f"{name}.processor", |
|
switch_name=switch_name, |
|
) |
|
module.set_processor(new_processor) |
|
return_dict[f"{name}.processor".replace(".", "__")] = new_processor |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
|
|
return return_dict |
|
|
|
def change_switch(model: torch.nn.Module, switch_name="default_switch", enabled_proc="default"): |
|
def recursive_change_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
recursive_change_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
processor = module.get_processor() |
|
if isinstance(processor, AttnProcessorSwitch) and processor.switch_name == switch_name: |
|
processor.choose_module(enabled_proc) |
|
|
|
for name, module in model.named_children(): |
|
recursive_change_processors(name, module) |
|
|
|
|
|
from diffusers.models.attention import Attention |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
**cross_attention_kwargs, |
|
) -> torch.Tensor: |
|
r""" |
|
The forward method of the `Attention` class. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
The hidden states of the query. |
|
encoder_hidden_states (`torch.Tensor`, *optional*): |
|
The hidden states of the encoder. |
|
attention_mask (`torch.Tensor`, *optional*): |
|
The attention mask to use. If `None`, no mask is applied. |
|
**cross_attention_kwargs: |
|
Additional keyword arguments to pass along to the cross attention. |
|
|
|
Returns: |
|
`torch.Tensor`: The output of the attention layer. |
|
""" |
|
|
|
|
|
|
|
return self.processor( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
Attention.forward = forward |