|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionImageVariationPipeline |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput |
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel |
|
from PIL import Image |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
|
|
|
|
|
|
class StableDiffusionImageCustomPipeline( |
|
StableDiffusionImageVariationPipeline |
|
): |
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
latents_offset=None, |
|
noisy_cond_latents=False, |
|
): |
|
super().__init__( |
|
vae=vae, |
|
image_encoder=image_encoder, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
requires_safety_checker=requires_safety_checker |
|
) |
|
latents_offset = tuple(latents_offset) if latents_offset is not None else None |
|
self.latents_offset = latents_offset |
|
if latents_offset is not None: |
|
self.register_to_config(latents_offset=latents_offset) |
|
self.noisy_cond_latents = noisy_cond_latents |
|
self.register_to_config(noisy_cond_latents=noisy_cond_latents) |
|
|
|
def encode_latents(self, image, device, dtype, height, width): |
|
|
|
if isinstance(image, Image.Image): |
|
image = [image] |
|
image = [img.convert("RGB") for img in image] |
|
images = self.image_processor.preprocess(image, height=height, width=width).to(device, dtype=dtype) |
|
latents = self.vae.encode(images).latent_dist.mode() * self.vae.config.scaling_factor |
|
if self.latents_offset is not None: |
|
return latents - torch.tensor(self.latents_offset).to(latents.device)[None, :, None, None] |
|
else: |
|
return latents |
|
|
|
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_embeddings = self.image_encoder(image).image_embeds |
|
image_embeddings = image_embeddings.unsqueeze(1) |
|
|
|
|
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) |
|
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
negative_prompt_embeds = torch.zeros_like(image_embeddings) |
|
|
|
|
|
|
|
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) |
|
|
|
return image_embeddings |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Union[Image.Image, List[Image.Image], torch.FloatTensor], |
|
height: Optional[int] = 1024, |
|
width: Optional[int] = 1024, |
|
height_cond: Optional[int] = 512, |
|
width_cond: Optional[int] = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
upper_left_feature: bool = False, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
image (`Image.Image` or `List[Image.Image]` or `torch.FloatTensor`): |
|
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with |
|
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. This parameter is modulated by `strength`. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
|
|
Examples: |
|
|
|
```py |
|
from diffusers import StableDiffusionImageVariationPipeline |
|
from PIL import Image |
|
from io import BytesIO |
|
import requests |
|
|
|
pipe = StableDiffusionImageVariationPipeline.from_pretrained( |
|
"lambdalabs/sd-image-variations-diffusers", revision="v2.0" |
|
) |
|
pipe = pipe.to("cuda") |
|
|
|
url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200" |
|
|
|
response = requests.get(url) |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
out = pipe(image, num_images_per_prompt=3, guidance_scale=15) |
|
out["images"][0].save("result.jpg") |
|
``` |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(image, height, width, callback_steps) |
|
|
|
|
|
if isinstance(image, Image.Image): |
|
batch_size = 1 |
|
elif isinstance(image, list): |
|
batch_size = len(image) |
|
else: |
|
batch_size = image.shape[0] |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
if isinstance(image, Image.Image) and upper_left_feature: |
|
|
|
emb_image = image.crop((0, 0, image.size[0] // 2, image.size[1] // 2)) |
|
else: |
|
emb_image = image |
|
|
|
image_embeddings = self._encode_image(emb_image, device, num_images_per_prompt, do_classifier_free_guidance) |
|
cond_latents = self.encode_latents(image, image_embeddings.device, image_embeddings.dtype, height_cond, width_cond) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.out_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
image_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.noisy_cond_latents: |
|
raise ValueError("Noisy condition latents is not recommended.") |
|
else: |
|
noisy_cond_latents = cond_latents |
|
|
|
noisy_cond_latents = torch.cat([torch.zeros_like(noisy_cond_latents), noisy_cond_latents]) if do_classifier_free_guidance else noisy_cond_latents |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings, condition_latents=noisy_cond_latents).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if self.latents_offset is not None: |
|
latents = latents + torch.tensor(self.latents_offset).to(latents.device)[None, :, None, None] |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
if __name__ == "__main__": |
|
pass |
|
|