File size: 7,379 Bytes
43b3166
 
 
 
3717f13
 
43b3166
 
 
3717f13
43b3166
3717f13
 
428e820
 
3717f13
 
43b3166
 
 
 
3717f13
43b3166
3717f13
 
43b3166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0db55f
 
43b3166
 
 
 
 
 
 
 
f5292fc
43b3166
 
 
 
 
 
 
 
354066d
43b3166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3717f13
 
1b3aa6b
 
 
 
 
 
 
 
 
3717f13
 
43b3166
 
 
 
 
3717f13
43b3166
3717f13
43b3166
 
 
 
 
 
 
3717f13
43b3166
3717f13
 
 
 
 
 
 
 
43b3166
 
 
 
 
3717f13
 
 
43b3166
3717f13
43b3166
 
 
 
 
3717f13
43b3166
3717f13
43b3166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3717f13
43b3166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3717f13
43b3166
 
 
 
 
3717f13
43b3166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3717f13
43b3166
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
from typing import Tuple
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler


DESCRIPTION = """# InterDiffusion-3.8
### [https://huggingface.co/cutycat2000x/InterDiffusion-3.8](https://huggingface.co/cutycat2000x/InterDiffusion-3.8)"""


def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed



MAX_SEED = np.iinfo(np.int32).max

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU, This may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0




if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "cutycat2000x/InterDiffusion-3.8",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)  
    pipe.load_lora_weights("cutycat2000x/LoRA", weight_name="lora.safetensors", adapter_name="adapt")
    pipe.set_adapters("adapt")
    pipe.to("cuda")




    
style_list = [
    {
        "name": "(LoRA)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },

    
]   
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(LoRA)"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

@spaces.GPU(enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    num_inference_steps: int = 30,
    num_images_per_prompt: int = 2,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    progress=gr.Progress(track_tqdm=True),
):

    
    seed = int(randomize_seed_fn(seed, randomize_seed))

    if not use_negative_prompt:
        negative_prompt = ""  # type: ignore
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)

    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images_per_prompt,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

examples = [
    'a smiling girl with sparkles in her eyes, walking in a garden, in the morning --style anime',
    'firewatch landscape, Graphic Novel, Pastel Art, Poster, Golden Hour, Electric Colors, 4k, RGB, Geometric, Volumetric, Lumen Global Illumination, Ray Tracing Reflections, Twisted Rays, Glowing Edges, RTX --raw',
    'Samsung Galaxy S9',
    'cat, 4k, 8k, hyperrealistic, realistic, High-resolution, unreal engine 5, rtx, 16k, taken on a sony camera, Cinematic, dramatic lighting',
    'cinimatic closeup of burning skull',
    'frozen elsa',
    'A rainbow tree, anime style, tree in focus',
    'A cat holding a sign that reads "Hello World" in cursive text',
    'A birthday card for "Meow"'
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=False,
    )

    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run")
        result = gr.Gallery(label="Result", columns=1, preview=True)
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
        negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Steps",
                minimum=10,
                maximum=60,
                step=1,
                value=30,
            )
        with gr.Row():
            num_images_per_prompt = gr.Slider(
                label="Images",
                minimum=1,
                maximum=5,
                step=1,
                value=2,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=6,
            )
    with gr.Row(visible=True):
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
            )
        

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=False,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    

    
    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            use_negative_prompt,
            num_inference_steps,
            num_images_per_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )



if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_api=False, debug=False)