Spaces:
Running
Running
from transformers import pipeline, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq, AutoProcessor | |
import torch | |
import streamlit as st | |
def whisper_os(): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
assistant_model_id = "distil-whisper/distil-large-v3" | |
assistant_model = AutoModelForCausalLM.from_pretrained( | |
assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
assistant_model.to(device) | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, | |
use_safetensors=True, attn_implementation="sdpa") | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
generate_kwargs={"assistant_model": assistant_model}, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
return pipe | |