CsanadT commited on
Commit
558b4ef
1 Parent(s): e8d4dd7

Upload 6 files

Browse files
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: ID2223 Lab1
3
- emoji: 👀
4
- colorFrom: pink
5
- colorTo: blue
6
  sdk: gradio
7
- sdk_version: 3.9
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
1
  ---
2
+ title: Iris
3
+ emoji: 🐢
4
+ colorFrom: purple
5
+ colorTo: green
6
  sdk: gradio
7
+ sdk_version: 3.5
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
iris-batch-inference-pipeline.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import modal
3
+
4
+ LOCAL=True
5
+
6
+ if LOCAL == False:
7
+ stub = modal.Stub()
8
+ hopsworks_image = modal.Image.debian_slim().pip_install(["hopsworks","joblib","seaborn","sklearn","dataframe-image"])
9
+ @stub.function(image=hopsworks_image, schedule=modal.Period(days=1), secret=modal.Secret.from_name("HOPSWORKS_API_KEY"))
10
+ def f():
11
+ g()
12
+
13
+ def g():
14
+ import pandas as pd
15
+ import hopsworks
16
+ import joblib
17
+ import datetime
18
+ from PIL import Image
19
+ from datetime import datetime
20
+ import dataframe_image as dfi
21
+ from sklearn.metrics import confusion_matrix
22
+ from matplotlib import pyplot
23
+ import seaborn as sns
24
+ import requests
25
+
26
+ project = hopsworks.login()
27
+ fs = project.get_feature_store()
28
+
29
+ mr = project.get_model_registry()
30
+ model = mr.get_model("iris_modal", version=1)
31
+ model_dir = model.download()
32
+ model = joblib.load(model_dir + "/iris_model.pkl")
33
+
34
+ feature_view = fs.get_feature_view(name="iris_modal", version=1)
35
+ batch_data = feature_view.get_batch_data()
36
+
37
+ y_pred = model.predict(batch_data)
38
+ # print(y_pred)
39
+ offset = 1
40
+ flower = y_pred[y_pred.size-offset]
41
+ flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + flower + ".png"
42
+ print("Flower predicted: " + flower)
43
+ img = Image.open(requests.get(flower_url, stream=True).raw)
44
+ img.save("./latest_iris.png")
45
+ dataset_api = project.get_dataset_api()
46
+ dataset_api.upload("./latest_iris.png", "Resources/images", overwrite=True)
47
+
48
+ iris_fg = fs.get_feature_group(name="iris_modal", version=1)
49
+ df = iris_fg.read()
50
+ # print(df["variety"])
51
+ label = df.iloc[-offset]["variety"]
52
+ label_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + label + ".png"
53
+ print("Flower actual: " + label)
54
+ img = Image.open(requests.get(label_url, stream=True).raw)
55
+ img.save("./actual_iris.png")
56
+ dataset_api.upload("./actual_iris.png", "Resources/images", overwrite=True)
57
+
58
+ monitor_fg = fs.get_or_create_feature_group(name="iris_predictions",
59
+ version=1,
60
+ primary_key=["datetime"],
61
+ description="Iris flower Prediction/Outcome Monitoring"
62
+ )
63
+
64
+ now = datetime.now().strftime("%m/%d/%Y, %H:%M:%S")
65
+ data = {
66
+ 'prediction': [flower],
67
+ 'label': [label],
68
+ 'datetime': [now],
69
+ }
70
+ monitor_df = pd.DataFrame(data)
71
+ monitor_fg.insert(monitor_df, write_options={"wait_for_job" : False})
72
+
73
+ history_df = monitor_fg.read()
74
+ # Add our prediction to the history, as the history_df won't have it -
75
+ # the insertion was done asynchronously, so it will take ~1 min to land on App
76
+ history_df = pd.concat([history_df, monitor_df])
77
+
78
+
79
+ df_recent = history_df.tail(5)
80
+ dfi.export(df_recent, './df_recent.png', table_conversion = 'matplotlib')
81
+ dataset_api.upload("./df_recent.png", "Resources/images", overwrite=True)
82
+
83
+ predictions = history_df[['prediction']]
84
+ labels = history_df[['label']]
85
+
86
+ # Only create the confusion matrix when our iris_predictions feature group has examples of all 3 iris flowers
87
+ print("Number of different flower predictions to date: " + str(predictions.value_counts().count()))
88
+ if predictions.value_counts().count() == 3:
89
+ results = confusion_matrix(labels, predictions)
90
+
91
+ df_cm = pd.DataFrame(results, ['True Setosa', 'True Versicolor', 'True Virginica'],
92
+ ['Pred Setosa', 'Pred Versicolor', 'Pred Virginica'])
93
+
94
+ cm = sns.heatmap(df_cm, annot=True)
95
+ fig = cm.get_figure()
96
+ fig.savefig("./confusion_matrix.png")
97
+ dataset_api.upload("./confusion_matrix.png", "Resources/images", overwrite=True)
98
+ else:
99
+ print("You need 3 different flower predictions to create the confusion matrix.")
100
+ print("Run the batch inference pipeline more times until you get 3 different iris flower predictions")
101
+
102
+
103
+ if __name__ == "__main__":
104
+ if LOCAL == True :
105
+ g()
106
+ else:
107
+ with stub.run():
108
+ f()
109
+
iris-feature-pipeline-daily.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import modal
3
+
4
+ BACKFILL=False
5
+ LOCAL=True
6
+
7
+ if LOCAL == False:
8
+ stub = modal.Stub()
9
+ image = modal.Image.debian_slim().pip_install(["hopsworks","joblib","seaborn","sklearn","dataframe-image"])
10
+
11
+ @stub.function(image=image, schedule=modal.Period(days=1), secret=modal.Secret.from_name("HOPSWORKS_API_KEY"))
12
+ def f():
13
+ g()
14
+
15
+
16
+ def generate_flower(name, sepal_len_max, sepal_len_min, sepal_width_max, sepal_width_min,
17
+ petal_len_max, petal_len_min, petal_width_max, petal_width_min):
18
+ """
19
+ Returns a single iris flower as a single row in a DataFrame
20
+ """
21
+ import pandas as pd
22
+ import random
23
+
24
+ df = pd.DataFrame({ "sepal_length": [random.uniform(sepal_len_max, sepal_len_min)],
25
+ "sepal_width": [random.uniform(sepal_width_max, sepal_width_min)],
26
+ "petal_length": [random.uniform(petal_len_max, petal_len_min)],
27
+ "petal_width": [random.uniform(petal_width_max, petal_width_min)]
28
+ })
29
+ df['variety'] = name
30
+ return df
31
+
32
+
33
+ def get_random_iris_flower():
34
+ """
35
+ Returns a DataFrame containing one random iris flower
36
+ """
37
+ import pandas as pd
38
+ import random
39
+
40
+ virginica_df = generate_flower("Virginica", 8, 5.5, 3.8, 2.2, 7, 4.5, 2.5, 1.4)
41
+ versicolor_df = generate_flower("Versicolor", 7.5, 4.5, 3.5, 2.1, 3.1, 5.5, 1.8, 1.0)
42
+ setosa_df = generate_flower("Setosa", 6, 4.5, 4.5, 2.3, 1.2, 2, 0.7, 0.3)
43
+
44
+ # randomly pick one of these 3 and write it to the featurestore
45
+ pick_random = random.uniform(0,3)
46
+ if pick_random >= 2:
47
+ iris_df = virginica_df
48
+ print("Virginica added")
49
+ elif pick_random >= 1:
50
+ iris_df = versicolor_df
51
+ print("Versicolor added")
52
+ else:
53
+ iris_df = setosa_df
54
+ print("Setosa added")
55
+
56
+ return iris_df
57
+
58
+
59
+
60
+ def g():
61
+ import hopsworks
62
+ import pandas as pd
63
+
64
+ project = hopsworks.login()
65
+ fs = project.get_feature_store()
66
+
67
+ if BACKFILL == True:
68
+ iris_df = pd.read_csv("https://repo.hops.works/master/hopsworks-tutorials/data/iris.csv")
69
+ else:
70
+ iris_df = get_random_iris_flower()
71
+
72
+ iris_fg = fs.get_or_create_feature_group(
73
+ name="iris_modal",
74
+ version=1,
75
+ primary_key=["sepal_length","sepal_width","petal_length","petal_width"],
76
+ description="Iris flower dataset")
77
+ iris_fg.insert(iris_df, write_options={"wait_for_job" : False})
78
+
79
+ if __name__ == "__main__":
80
+ if LOCAL == True :
81
+ g()
82
+ else:
83
+ with stub.run():
84
+ f()
iris-feature-pipeline.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import modal
3
+
4
+ LOCAL=True
5
+
6
+ if LOCAL == False:
7
+ stub = modal.Stub()
8
+ image = modal.Image.debian_slim().pip_install(["hopsworks","joblib","seaborn","sklearn","dataframe-image"])
9
+
10
+ @stub.function(image=image, schedule=modal.Period(days=1), secret=modal.Secret.from_name("HOPSWORKS_API_KEY"))
11
+ def f():
12
+ g()
13
+
14
+ def g():
15
+ import hopsworks
16
+ import pandas as pd
17
+
18
+ project = hopsworks.login()
19
+ fs = project.get_feature_store()
20
+ iris_df = pd.read_csv("https://repo.hops.works/master/hopsworks-tutorials/data/iris.csv")
21
+ iris_fg = fs.get_or_create_feature_group(
22
+ name="iris_modal",
23
+ version=1,
24
+ primary_key=["sepal_length","sepal_width","petal_length","petal_width"],
25
+ description="Iris flower dataset")
26
+ iris_fg.insert(iris_df, write_options={"wait_for_job" : False})
27
+
28
+ if __name__ == "__main__":
29
+ if LOCAL == True :
30
+ g()
31
+ else:
32
+ with stub.run():
33
+ f()
iris-training-pipeline.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import modal
3
+
4
+ LOCAL=True
5
+
6
+ if LOCAL == False:
7
+ stub = modal.Stub()
8
+ image = modal.Image.debian_slim().apt_install(["libgomp1"]).pip_install(["hopsworks", "seaborn", "joblib", "scikit-learn"])
9
+
10
+ @stub.function(image=image, schedule=modal.Period(days=1), secret=modal.Secret.from_name("HOPSWORKS_API_KEY"))
11
+ def f():
12
+ g()
13
+
14
+
15
+ def g():
16
+ import hopsworks
17
+ import pandas as pd
18
+ from sklearn.neighbors import KNeighborsClassifier
19
+ from sklearn.metrics import accuracy_score
20
+ from sklearn.metrics import confusion_matrix
21
+ from sklearn.metrics import classification_report
22
+ import seaborn as sns
23
+ from matplotlib import pyplot
24
+ from hsml.schema import Schema
25
+ from hsml.model_schema import ModelSchema
26
+ import joblib
27
+
28
+ # You have to set the environment variable 'HOPSWORKS_API_KEY' for login to succeed
29
+ project = hopsworks.login()
30
+ # fs is a reference to the Hopsworks Feature Store
31
+ fs = project.get_feature_store()
32
+
33
+ # The feature view is the input set of features for your model. The features can come from different feature groups.
34
+ # You can select features from different feature groups and join them together to create a feature view
35
+ try:
36
+ feature_view = fs.get_feature_view(name="iris_modal", version=1)
37
+ except:
38
+ iris_fg = fs.get_feature_group(name="iris_modal", version=1)
39
+ query = iris_fg.select_all()
40
+ feature_view = fs.create_feature_view(name="iris_modal",
41
+ version=1,
42
+ description="Read from Iris flower dataset",
43
+ labels=["variety"],
44
+ query=query)
45
+
46
+ # You can read training data, randomly split into train/test sets of features (X) and labels (y)
47
+ X_train, X_test, y_train, y_test = feature_view.train_test_split(0.2)
48
+
49
+ # Train our model with the Scikit-learn K-nearest-neighbors algorithm using our features (X_train) and labels (y_train)
50
+ model = KNeighborsClassifier(n_neighbors=2)
51
+ model.fit(X_train, y_train.values.ravel())
52
+
53
+ # Evaluate model performance using the features from the test set (X_test)
54
+ y_pred = model.predict(X_test)
55
+
56
+ # Compare predictions (y_pred) with the labels in the test set (y_test)
57
+ metrics = classification_report(y_test, y_pred, output_dict=True)
58
+ results = confusion_matrix(y_test, y_pred)
59
+
60
+ # Create the confusion matrix as a figure, we will later store it as a PNG image file
61
+ df_cm = pd.DataFrame(results, ['True Setosa', 'True Versicolor', 'True Virginica'],
62
+ ['Pred Setosa', 'Pred Versicolor', 'Pred Virginica'])
63
+ cm = sns.heatmap(df_cm, annot=True)
64
+ fig = cm.get_figure()
65
+
66
+ # We will now upload our model to the Hopsworks Model Registry. First get an object for the model registry.
67
+ mr = project.get_model_registry()
68
+
69
+ # The contents of the 'iris_model' directory will be saved to the model registry. Create the dir, first.
70
+ model_dir="iris_model"
71
+ if os.path.isdir(model_dir) == False:
72
+ os.mkdir(model_dir)
73
+
74
+ # Save both our model and the confusion matrix to 'model_dir', whose contents will be uploaded to the model registry
75
+ joblib.dump(model, model_dir + "/iris_model.pkl")
76
+ fig.savefig(model_dir + "/confusion_matrix.png")
77
+
78
+
79
+ # Specify the schema of the model's input/output using the features (X_train) and labels (y_train)
80
+ input_schema = Schema(X_train)
81
+ output_schema = Schema(y_train)
82
+ model_schema = ModelSchema(input_schema, output_schema)
83
+
84
+ # Create an entry in the model registry that includes the model's name, desc, metrics
85
+ iris_model = mr.python.create_model(
86
+ name="iris_modal",
87
+ metrics={"accuracy" : metrics['accuracy']},
88
+ model_schema=model_schema,
89
+ description="Iris Flower Predictor"
90
+ )
91
+
92
+ # Upload the model to the model registry, including all files in 'model_dir'
93
+ iris_model.save(model_dir)
94
+
95
+ if __name__ == "__main__":
96
+ if LOCAL == True :
97
+ g()
98
+ else:
99
+ with stub.run():
100
+ f()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ hopsworks
2
+ joblib
3
+ scikit-learn