File size: 4,864 Bytes
bbb7a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad85d2
bbb7a01
 
 
e2fd829
bbb7a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import requests
from markdownify import markdownify as md
from requests.exceptions import RequestException
import re
from transformers.agents import (
    ReactCodeAgent,
    ReactJsonAgent,
    HfApiEngine,
    ManagedAgent,
    stream_to_gradio,
    Tool,
)
from transformers.agents.search import DuckDuckGoSearchTool
import gradio as gr
import datetime
from huggingface_hub import login

# Log in to Hugging Face
hf_token = os.getenv("hf_token")
login(hf_token)
model = "meta-llama/Meta-Llama-3.1-70B-Instruct"

# Define the VisitWebpageTool
class VisitWebpageTool(Tool):
    name = "visit_webpage"
    description = "Visits a webpage at the given url and returns its content as a markdown string."
    inputs = {
        "url": {
            "type": "string",
            "description": "The url of the webpage to visit.",
        }
    }
    output_type = "string"

    def forward(self, url: str) -> str:
        try:
            response = requests.get(url)
            response.raise_for_status()
            markdown_content = md(response.text).strip()
            markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
            return markdown_content
        except RequestException as e:
            return f"Error fetching the webpage: {str(e)}"
        except Exception as e:
            return f"An unexpected error occurred: {str(e)}"

visit_page_tool = VisitWebpageTool()

# Set up the multi-agent system
llm_engine = HfApiEngine(model)

# Agent to clarify specifics
clarify_agent = ReactJsonAgent(
    tools=[],
    llm_engine=llm_engine,
    max_iterations=20,
)

# Agent to plan the project
plan_agent = ReactJsonAgent(
    tools=[],
    llm_engine=llm_engine,
    max_iterations=20,
)

# Agent to break the plan into tasks
task_agent = ReactJsonAgent(
    tools=[],
    llm_engine=llm_engine,
    max_iterations=20,
)

# Agent to execute tasks
execute_agent = ReactCodeAgent(
    tools=[],
    llm_engine=llm_engine,
    max_iterations=20,
    additional_authorized_imports=['requests', 'bs4']
)

# Agent to review code
review_agent = ReactCodeAgent(
    tools=[],
    llm_engine=llm_engine,
    max_iterations=20,
    additional_authorized_imports=['requests', 'bs4', 'transformers']
    )

# Agent to revise code
revise_agent = ReactCodeAgent(
    tools=[],
    llm_engine=llm_engine,
    max_iterations=20,
)

# Managed agents
managed_clarify_agent = ManagedAgent(
    agent=clarify_agent,
    name="clarify_agent",
    description="Clarifies project specifics if not given in the project description.",
)

managed_plan_agent = ManagedAgent(
    agent=plan_agent,
    name="plan_agent",
    description="Plans the project.",
)

managed_task_agent = ManagedAgent(
    agent=task_agent,
    name="task_agent",
    description="Breaks the plan into tasks.",
)

managed_execute_agent = ManagedAgent(
    agent=execute_agent,
    name="execute_agent",
    description="Executes the tasks.",
)

managed_review_agent = ManagedAgent(
    agent=review_agent,
    name="review_agent",
    description="Reviews the code written in completion of tasks.",
)

managed_revise_agent = ManagedAgent(
    agent=revise_agent,
    name="revise_agent",
    description="Revises the code if needed.",
)

# Manager agent
manager_agent = ReactCodeAgent(
    tools=[],
    llm_engine=llm_engine,
    managed_agents=[
        managed_clarify_agent,
        managed_plan_agent,
        managed_task_agent,
        managed_execute_agent,
        managed_review_agent,
        managed_revise_agent,
    ],
    additional_authorized_imports=["time", "datetime"],
)

# Implement the Gradio interface
def interact_with_agent(task):
    messages = []
    messages.append(gr.ChatMessage(role="user", content=task))
    yield messages
    try:
        for msg in stream_to_gradio(manager_agent, task):
            messages.append(msg)
            yield messages + [
                gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
            ]
    except Exception as e:
        messages.append(gr.ChatMessage(role="assistant", content=f"Error: {str(e)}"))
    yield messages

with gr.Blocks() as demo:
    gr.Markdown("# Multi-agent Software Team")
    gr.Markdown("Gradio space based on the multiagent_web_assistant cookbook https://huggingface.co/learn/cookbook/multiagent_web_assistant")
    text_input = gr.Textbox(lines=1, label="Project Description", value="Create a simple web app that allows users to upload images and apply filters.")
    submit = gr.Button("Start Project Development")
    chatbot = gr.Chatbot(
        label="Agent",
        type="messages",
        avatar_images=(
            None,
            "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
        ),
    )
    submit.click(interact_with_agent, [text_input], [chatbot])

if __name__ == "__main__":
    demo.launch(share=True)