Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,970 Bytes
6a8ca1f 04fc1f1 6a8ca1f e9cc0b5 6a8ca1f de50a7e 04fc1f1 ee5e19e e27d897 db2ea29 ee5e19e e27d897 ee5e19e db2ea29 6a8ca1f e27d897 8a8a62b e27d897 8a8a62b db2ea29 6a8ca1f ee5e19e fefde70 6a8ca1f e9ecb71 6a8ca1f e9ecb71 6a8ca1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import spaces
import torch
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image
if torch.cuda.is_available():
device, dtype = "cuda", torch.float16
else:
device, dtype = "cpu", torch.float32
model_id = "vikhyatk/moondream2"
revision = "2024-04-02"
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
moondream = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype
).to(device=device)
moondream.eval()
@spaces.GPU
def answer_questions(image_tuples, prompt_text):
result = ""
prompts = [p.strip() for p in prompt_text.split(',')] # Splitting and cleaning prompts
print(f"prompts\n{prompts}\n")
image_embeds = [img[0] for img in image_tuples if img[0] is not None] # Extracting images from tuples, ignoring None
# Check if the lengths of image_embeds and prompts are equal
#if len(image_embeds) != len(prompts):
#return ("Error: The number of images input and prompts input (seperate by commas in input text field) must be the same.")
answers = []
for prompt in prompts:
image_answers = moondream.batch_answer(
images=[img.convert("RGB") for img in image_embeds],
prompts=[prompt] * len(image_embeds),
tokenizer=tokenizer,
)
answers.append(image_answers)
for i in range(len(image_tuples)):
image_name = f"image{i+1}"
image_answers = [answer[i] for answer in answers]
print(f"image{i+1}_answers \n {image_answers} \n")
data.append([image_name] + image_answers)
result = {'headers': prompts, 'data': data}
return result
'''
answers = moondream.batch_answer(
images=image_embeds,
prompts=prompts,
tokenizer=tokenizer,
)
for question, answer in zip(prompts, answers):
result += (f"Q: {question}\nA: {answer}\n\n")
return result
'''
with gr.Blocks() as demo:
gr.Markdown("# moondream2 unofficial batch processing demo")
gr.Markdown("1. Select images\n2. Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?\n\n")
gr.Markdown("*Tested and Running on free CPU space tier currently so results may take a bit to process compared to using GPU space hardware*")
gr.Markdown("## π moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)")
with gr.Row():
img = gr.Gallery(label="Upload Images", type="pil")
prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8)
submit = gr.Button("Submit")
output = gr.TextArea(label="Responses", lines=8)
submit.click(answer_questions, [img, prompt], output)
demo.queue().launch()
|