Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import re | |
import gradio as gr | |
from threading import Thread | |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM | |
from PIL import ImageDraw | |
from torchvision.transforms.v2 import Resize | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
model_id = "vikhyatk/moondream2" | |
revision = "2024-08-26" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
moondream = AutoModelForCausalLM.from_pretrained( | |
model_id, trust_remote_code=True, revision=revision, | |
torch_dtype=torch.bfloat16, device_map={"": "cuda"}, | |
attn_implementation="flash_attention_2" | |
) | |
moondream.eval() | |
def answer_questions(image_tuples, prompt_text): | |
result = "" | |
Q_and_A = "" | |
prompts = [p.strip() for p in prompt_text.split(',')] | |
image_embeds = [img[0] for img in image_tuples if img[0] is not None] | |
answers = [] | |
for prompt in prompts: | |
thread = Thread(target=lambda: answers.append(moondream.batch_answer( | |
images=[img.convert("RGB") for img in image_embeds], | |
prompts=[prompt] * len(image_embeds), | |
tokenizer=tokenizer))) | |
thread.start() | |
thread.join() | |
for i, prompt in enumerate(prompts): | |
Q_and_A += f"### Q: {prompt}\n" | |
for j, image_tuple in enumerate(image_tuples): | |
image_name = f"image{j+1}" | |
answer_text = answers[i][j] | |
Q_and_A += f"**{image_name} A:** \n {answer_text} \n" | |
result = {'headers': prompts, 'data': answers} | |
print("result\n{}\n\nQ_and_A\n{}\n\n".format(result, Q_and_A)) | |
return Q_and_A, result | |
with gr.Blocks() as demo: | |
gr.Markdown("# moondream2 unofficial batch processing demo") | |
gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n") | |
gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each prompt on each image**") | |
gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*") | |
gr.Markdown("A tiny vision language model. [moondream2](https://huggingface.co/vikhyatk/moondream2)") | |
with gr.Row(): | |
img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
with gr.Row(): | |
output = gr.Markdown(label="Questions and Answers", line_breaks=True) | |
with gr.Row(): | |
output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True) | |
submit.click(answer_questions, inputs=[img, prompt], outputs=[output, output2]) | |
demo.queue().launch() |