Csplk commited on
Commit
552acc6
β€’
1 Parent(s): 51972f7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import torch
3
+ import re
4
+ import gradio as gr
5
+ from threading import Thread
6
+ from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
7
+
8
+ import subprocess
9
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
10
+
11
+ model_id = "vikhyatk/moondream2"
12
+ revision = "2024-04-02"
13
+ tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
14
+ moondream = AutoModelForCausalLM.from_pretrained(
15
+ model_id, trust_remote_code=True, revision=revision,
16
+ torch_dtype=torch.bfloat16, device_map={"": "cuda"},
17
+ attn_implementation="flash_attention_2"
18
+ )
19
+ moondream.eval()
20
+
21
+
22
+ @spaces.GPU(duration=10)
23
+ def answer_question(img, prompt):
24
+ image_embeds = moondream.encode_image(img)
25
+ streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
26
+ thread = Thread(
27
+ target=moondream.answer_question,
28
+ kwargs={
29
+ "image_embeds": image_embeds,
30
+ "question": prompt,
31
+ "tokenizer": tokenizer,
32
+ "streamer": streamer,
33
+ },
34
+ )
35
+ thread.start()
36
+
37
+ buffer = ""
38
+ for new_text in streamer:
39
+ buffer += new_text
40
+ yield buffer.strip()
41
+
42
+
43
+ with gr.Blocks() as demo:
44
+ gr.Markdown(
45
+ """
46
+ # πŸŒ” moondream2
47
+ A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
48
+ """
49
+ )
50
+ with gr.Row():
51
+ prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4)
52
+ submit = gr.Button("Submit")
53
+ with gr.Row():
54
+ img = gr.Image(type="pil", label="Upload an Image")
55
+ output = gr.TextArea(label="Response")
56
+ submit.click(answer_question, [img, prompt], output)
57
+ prompt.submit(answer_question, [img, prompt], output)
58
+
59
+ demo.queue().launch()