import spaces import torch import re import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from PIL import Image if torch.cuda.is_available(): device, dtype = "cuda", torch.float16 else: device, dtype = "cpu", torch.float32 model_id = "vikhyatk/moondream2" revision = "2024-04-02" tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) moondream = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype ).to(device=device) moondream.eval() @spaces.GPU def answer_questions(image_tuples, prompt_text): result = "" Q_and_A = "" prompts = [p.strip() for p in prompt_text.split(',')] # Splitting and cleaning prompts image_embeds = [img[0] for img in image_tuples if img[0] is not None] # Extracting images from tuples, ignoring None print(f"\nprompts: {prompts}\n\n") answers = [] for prompt in prompts: image_answers = moondream.batch_answer( images=[img.convert("RGB") for img in image_embeds], prompts=[prompt] * len(image_embeds), tokenizer=tokenizer, ) answers.append(image_answers) for i, prompt in enumerate(prompts): Q_and_A += f"Q: {prompt}\n\n" for j, image_tuple in enumerate(image_tuples): image_name = f"image{j+1}" answer_text = answers[i][j] # Retrieve the answer for the i-th prompt for the j-th image Q_and_A += f"{image_name} A:\n{answer_text}\n\n" result = {'headers': prompts, 'data': answers} # Updated result handling print(f"result\n{result}\n\nQ_and_A\n{Q_and_A}\n\n") return Q_and_A, result with gr.Blocks() as demo: gr.Markdown("# moondream2 unofficial batch processing demo") gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n") gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each promp on each image**") gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*") gr.Markdown("## 🌔 moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)") with gr.Row(): img = gr.Gallery(label="Upload Images", type="pil") with gr.Row(): prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8) with gr.Row(): submit = gr.Button("Submit") output = gr.TextArea(label="Questions and Answers", lines=30) output2 = gr.Dataframe(label="Structured Dataframe", type="array",wrap=True) submit.click(answer_questions, [img, prompt], [output, output2]) demo.queue().launch()