import spaces import torch import re import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from PIL import Image if torch.cuda.is_available(): device, dtype = "cuda", torch.float16 else: device, dtype = "cpu", torch.float32 model_id = "vikhyatk/moondream2" revision = "2024-04-02" tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) moondream = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype ).to(device=device) moondream.eval() @spaces.GPU def answer_questions(image_tuples, prompt_text): result = "" prompts = [p.strip() for p in prompt_text.split(',')] # Splitting and cleaning prompts print(f"prompts\n{prompts}\n") image_embeds = [img[0] for img in image_tuples if img[0] is not None] # Extracting images from tuples, ignoring None # Check if the lengths of image_embeds and prompts are equal #if len(image_embeds) != len(prompts): #return ("Error: The number of images input and prompts input (seperate by commas in input text field) must be the same.") answers = [] for prompt in prompts: image_answers = moondream.batch_answer( images=[img.convert("RGB") for img in image_embeds], prompts=[prompt] * len(image_embeds), tokenizer=tokenizer, ) answers.append(image_answers) data = [] for i in range(len(image_tuples)): image_name = f"image{i+1}" image_answers = [answer[i] for answer in answers] print(f"image{i+1}_answers \n {image_answers} \n") data.append([image_name] + image_answers) result = {'headers': prompts, 'data': data} return result ''' answers = moondream.batch_answer( images=image_embeds, prompts=prompts, tokenizer=tokenizer, ) for question, answer in zip(prompts, answers): result += (f"Q: {question}\nA: {answer}\n\n") return result ''' with gr.Blocks() as demo: gr.Markdown("# moondream2 unofficial batch processing demo") gr.Markdown("1. Select images\n2. Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?\n\n") gr.Markdown("*Tested and Running on free CPU space tier currently so results may take a bit to process compared to using GPU space hardware*") gr.Markdown("## 🌔 moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)") with gr.Row(): img = gr.Gallery(label="Upload Images", type="pil") prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8) submit = gr.Button("Submit") output = gr.TextArea(label="Responses", lines=8) submit.click(answer_questions, [img, prompt], output) demo.queue().launch()