Spaces:
Runtime error
Runtime error
File size: 30,205 Bytes
24f9881 4bc5ddd 24f9881 4bc5ddd 24f9881 4bc5ddd 24f9881 81ff5e6 24f9881 67d1bfd 24f9881 81ff5e6 24f9881 81ff5e6 24f9881 81ff5e6 24f9881 81ff5e6 24f9881 81ff5e6 24f9881 4bc5ddd 24f9881 4bc5ddd 24f9881 4bc5ddd 24f9881 4bc5ddd 24f9881 6a43180 24f9881 7d1d8e0 24f9881 4bc5ddd 24f9881 4bc5ddd 24f9881 a150029 24f9881 7d1d8e0 24f9881 4bc5ddd 24f9881 81ff5e6 24f9881 81ff5e6 24f9881 81ff5e6 24f9881 4bc5ddd 24f9881 4bc5ddd 24f9881 81ff5e6 24f9881 81ff5e6 24f9881 4bc5ddd 24f9881 4bc5ddd 24f9881 81ff5e6 24f9881 a150029 67d1bfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
# Copyright (C) 2023, Computer Vision Lab, Seoul National University, https://cv.snu.ac.kr
#
# Copyright 2023 LucidDreamer Authors
#
# Computer Vision Lab, SNU, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from the Computer Vision Lab, SNU or
# its affiliates is strictly prohibited.
#
# For permission requests, please contact [email protected], [email protected], [email protected], [email protected].
import os
import glob
import json
import time
import datetime
import warnings
import shutil
from random import randint
from argparse import ArgumentParser
warnings.filterwarnings(action='ignore')
import pickle
import imageio
import numpy as np
import open3d as o3d
from PIL import Image
from tqdm import tqdm
from scipy.interpolate import griddata as interp_grid
from scipy.ndimage import minimum_filter, maximum_filter
import torch
import torch.nn.functional as F
import gradio as gr
from diffusers import (
StableDiffusionInpaintPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetInpaintPipeline)
from arguments import GSParams, CameraParams
from gaussian_renderer import render
from scene import Scene, GaussianModel
from scene.dataset_readers import loadCameraPreset
from utils.loss import l1_loss, ssim
from utils.camera import load_json
from utils.depth import colorize
from utils.lama import LaMa
from utils.trajectory import get_camerapaths, get_pcdGenPoses
get_kernel = lambda p: torch.ones(1, 1, p * 2 + 1, p * 2 + 1).to('cuda')
t2np = lambda x: (x[0].permute(1, 2, 0).clamp_(0, 1) * 255.0).to(torch.uint8).detach().cpu().numpy()
np2t = lambda x: (torch.as_tensor(x).to(torch.float32).permute(2, 0, 1) / 255.0)[None, ...].to('cuda')
pad_mask = lambda x, padamount=1: t2np(
F.conv2d(np2t(x[..., None]), get_kernel(padamount), padding=padamount))[..., 0].astype(bool)
class LucidDreamer:
def __init__(self, for_gradio=True, save_dir=None):
self.opt = GSParams()
self.cam = CameraParams()
self.save_dir = save_dir
self.for_gradio = for_gradio
self.root = 'outputs'
self.default_model = 'SD1.5 (default)'
self.timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
self.gaussians = GaussianModel(self.opt.sh_degree)
bg_color = [1, 1, 1] if self.opt.white_background else [0, 0, 0]
self.background = torch.tensor(bg_color, dtype=torch.float32, device='cuda')
self.rgb_model = StableDiffusionInpaintPipeline.from_pretrained(
'runwayml/stable-diffusion-inpainting', revision='fp16', torch_dtype=torch.float16).to('cuda')
# 'stablediffusion/SD1-5', revision='fp16', torch_dtype=torch.float16).to('cuda')
self.d_model = torch.hub.load('./ZoeDepth', 'ZoeD_N', source='local', pretrained=True).to('cuda')
self.controlnet = None
self.lama = None
self.current_model = self.default_model
def load_model(self, model_name, use_lama=True):
if model_name is None:
model_name = self.default_model
if self.current_model == model_name:
return
if model_name == self.default_model:
self.controlnet = None
self.lama = None
self.rgb_model = StableDiffusionInpaintPipeline.from_pretrained(
# 'runwayml/stable-diffusion-inpainting',
'stablediffusion/SD1-5',
revision='fp16',
torch_dtype=torch.float16,
safety_checker=None,
).to('cuda')
else:
if self.controlnet is None:
self.controlnet = ControlNetModel.from_pretrained(
'lllyasviel/control_v11p_sd15_inpaint', torch_dtype=torch.float16)
if self.lama is None and use_lama:
self.lama = LaMa('cuda')
self.rgb_model = StableDiffusionControlNetInpaintPipeline.from_pretrained(
f'stablediffusion/{model_name}',
controlnet=self.controlnet,
revision='fp16',
torch_dtype=torch.float16,
safety_checker=None,
).to('cuda')
# self.rgb_model.enable_model_cpu_offload()
torch.cuda.empty_cache()
self.current_model = model_name
def rgb(self, prompt, image, negative_prompt='', generator=None, num_inference_steps=50, mask_image=None):
image_pil = Image.fromarray(np.round(image * 255.).astype(np.uint8))
mask_pil = Image.fromarray(np.round((1 - mask_image) * 255.).astype(np.uint8))
if self.current_model == self.default_model:
return self.rgb_model(
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
num_inference_steps=num_inference_steps,
image=image_pil,
mask_image=mask_pil,
).images[0]
kwargs = {
'negative_prompt': negative_prompt,
'generator': generator,
'strength': 0.9,
'num_inference_steps': num_inference_steps,
'height': self.cam.H,
'width': self.cam.W,
}
image_np = np.round(np.clip(image, 0, 1) * 255.).astype(np.uint8)
mask_sum = np.clip((image.prod(axis=-1) == 0) + (1 - mask_image), 0, 1)
mask_padded = pad_mask(mask_sum, 3)
masked = image_np * np.logical_not(mask_padded[..., None])
if self.lama is not None:
lama_image = Image.fromarray(self.lama(masked, mask_padded).astype(np.uint8))
else:
lama_image = image
mask_image = Image.fromarray(mask_padded.astype(np.uint8) * 255)
control_image = self.make_controlnet_inpaint_condition(lama_image, mask_image)
return self.rgb_model(
prompt=prompt,
image=lama_image,
control_image=control_image,
mask_image=mask_image,
**kwargs,
).images[0]
def d(self, im):
return self.d_model.infer_pil(im)
def make_controlnet_inpaint_condition(self, image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def run(self, rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, render_camerapath, model_name=None, example_name=None):
if rgb_cond is None or txt_cond is None:
return (None, None, None)
gaussians = self.create(
rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, model_name, example_name)
if gaussians is None:
return (None, None, None)
gallery, depth = self.render_video(render_camerapath, example_name=example_name)
return (gaussians, gallery, depth)
def create(self, rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, model_name=None, example_name=None):
if rgb_cond is None or txt_cond is None:
return None
if self.for_gradio:
self.cleaner()
self.load_model(model_name)
if example_name and example_name != 'DON\'T':
outfile = os.path.join('examples', f'{example_name}.ply')
if not os.path.exists(outfile):
self.traindata = self.generate_pcd(rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps)
self.scene = Scene(self.traindata, self.gaussians, self.opt)
self.training()
outfile = self.save_ply(outfile)
else:
self.traindata = self.generate_pcd(rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps)
self.scene = Scene(self.traindata, self.gaussians, self.opt)
self.training()
self.timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
outfile = self.save_ply(os.path.join(self.save_dir, 'gsplat.ply'))
return outfile
def save_ply(self, fpath=None):
if fpath is None:
dpath = os.path.join(self.root, self.timestamp)
fpath = os.path.join(dpath, 'gsplat.ply')
os.makedirs(dpath, exist_ok=True)
if not os.path.exists(fpath):
self.gaussians.save_ply(fpath)
else:
self.gaussians.load_ply(fpath)
return fpath
def cleaner(self):
# Remove the temporary file created yesterday.
for dpath in glob.glob(os.path.join('/tmp/gradio', '*', self.root, '*')):
timestamp = datetime.datetime.strptime(os.path.basename(dpath), '%y%m%d_%H%M%S')
if timestamp < datetime.datetime.now() - datetime.timedelta(days=1):
try:
shutil.rmtree(dpath)
except OSError as e:
print("Error: %s - %s." % (e.filename, e.strerror))
def render_video(self, preset, example_name=None, progress=gr.Progress()):
if example_name and example_name != 'DON\'T':
videopath = os.path.join('examples', f'{example_name}_{preset}.mp4')
depthpath = os.path.join('examples', f'depth_{example_name}_{preset}.mp4')
else:
if self.for_gradio:
videopath = os.path.join(self.root, self.timestamp, f'{preset}.mp4')
depthpath = os.path.join(self.root, self.timestamp, f'depth_{preset}.mp4')
else:
videopath = os.path.join(self.save_dir, f'{preset}.mp4')
depthpath = os.path.join(self.save_dir, f'depth_{preset}.mp4')
if os.path.exists(videopath) and os.path.exists(depthpath):
return videopath, depthpath
if not hasattr(self, 'scene'):
views = load_json(os.path.join('cameras', f'{preset}.json'), self.cam.H, self.cam.W)
else:
views = self.scene.getPresetCameras(preset)
framelist = []
depthlist = []
dmin, dmax = 1e8, -1e8
if self.for_gradio:
iterable_render = progress.tqdm(views, desc='[4/4] Rendering a video')
else:
iterable_render = views
for view in iterable_render:
results = render(view, self.gaussians, self.opt, self.background)
frame, depth = results['render'], results['depth']
framelist.append(
np.round(frame.permute(1,2,0).detach().cpu().numpy().clip(0,1)*255.).astype(np.uint8))
depth = -(depth * (depth > 0)).detach().cpu().numpy()
dmin_local = depth.min().item()
dmax_local = depth.max().item()
if dmin_local < dmin:
dmin = dmin_local
if dmax_local > dmax:
dmax = dmax_local
depthlist.append(depth)
progress(1, desc='[4/4] Rendering a video...')
# depthlist = [colorize(depth, vmin=dmin, vmax=dmax) for depth in depthlist]
depthlist = [colorize(depth) for depth in depthlist]
if not os.path.exists(videopath):
imageio.mimwrite(videopath, framelist, fps=60, quality=8)
if not os.path.exists(depthpath):
imageio.mimwrite(depthpath, depthlist, fps=60, quality=8)
return videopath, depthpath
def training(self, progress=gr.Progress()):
if not self.scene:
raise('Build 3D Scene First!')
if self.for_gradio:
iterable_gauss = progress.tqdm(range(1, self.opt.iterations + 1), desc='[3/4] Baking Gaussians')
else:
iterable_gauss = range(1, self.opt.iterations + 1)
for iteration in iterable_gauss:
self.gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
self.gaussians.oneupSHdegree()
# Pick a random Camera
viewpoint_stack = self.scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# import pdb; pdb.set_trace()
# Render
render_pkg = render(viewpoint_cam, self.gaussians, self.opt, self.background)
image, viewspace_point_tensor, visibility_filter, radii = (
render_pkg['render'], render_pkg['viewspace_points'], render_pkg['visibility_filter'], render_pkg['radii'])
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - self.opt.lambda_dssim) * Ll1 + self.opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
with torch.no_grad():
# Densification
if iteration < self.opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
self.gaussians.max_radii2D[visibility_filter] = torch.max(
self.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
self.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > self.opt.densify_from_iter and iteration % self.opt.densification_interval == 0:
size_threshold = 20 if iteration > self.opt.opacity_reset_interval else None
self.gaussians.densify_and_prune(
self.opt.densify_grad_threshold, 0.005, self.scene.cameras_extent, size_threshold)
if (iteration % self.opt.opacity_reset_interval == 0
or (self.opt.white_background and iteration == self.opt.densify_from_iter)
):
self.gaussians.reset_opacity()
# Optimizer step
if iteration < self.opt.iterations:
self.gaussians.optimizer.step()
self.gaussians.optimizer.zero_grad(set_to_none = True)
def generate_pcd(self, rgb_cond, prompt, negative_prompt, pcdgenpath, seed, diff_steps, progress=gr.Progress()):
## processing inputs
generator=torch.Generator(device='cuda').manual_seed(seed)
w_in, h_in = rgb_cond.size
if w_in/h_in > 1.1 or h_in/w_in > 1.1: # if height and width are similar, do center crop
in_res = max(w_in, h_in)
image_in, mask_in = np.zeros((in_res, in_res, 3), dtype=np.uint8), 255*np.ones((in_res, in_res, 3), dtype=np.uint8)
image_in[int(in_res/2-h_in/2):int(in_res/2+h_in/2), int(in_res/2-w_in/2):int(in_res/2+w_in/2)] = np.array(rgb_cond)
mask_in[int(in_res/2-h_in/2):int(in_res/2+h_in/2), int(in_res/2-w_in/2):int(in_res/2+w_in/2)] = 0
image2 = np.array(Image.fromarray(image_in).resize((self.cam.W, self.cam.H))).astype(float) / 255.0
mask2 = np.array(Image.fromarray(mask_in).resize((self.cam.W, self.cam.H))).astype(float) / 255.0
image_curr = self.rgb(
prompt=prompt,
image=image2,
negative_prompt=negative_prompt, generator=generator,
mask_image=mask2,
)
else: # if there is a large gap between height and width, do inpainting
if w_in > h_in:
image_curr = rgb_cond.crop((int(w_in/2-h_in/2), 0, int(w_in/2+h_in/2), h_in)).resize((self.cam.W, self.cam.H))
else: # w <= h
image_curr = rgb_cond.crop((0, int(h_in/2-w_in/2), w_in, int(h_in/2+w_in/2))).resize((self.cam.W, self.cam.H))
render_poses = get_pcdGenPoses(pcdgenpath)
depth_curr = self.d(image_curr)
center_depth = np.mean(depth_curr[h_in//2-10:h_in//2+10, w_in//2-10:w_in//2+10])
###########################################################################################################################
# Iterative scene generation
H, W, K = self.cam.H, self.cam.W, self.cam.K
x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') # pixels
edgeN = 2
edgemask = np.ones((H-2*edgeN, W-2*edgeN))
edgemask = np.pad(edgemask, ((edgeN,edgeN),(edgeN,edgeN)))
### initialize
R0, T0 = render_poses[0,:3,:3], render_poses[0,:3,3:4]
pts_coord_cam = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))
new_pts_coord_world2 = (np.linalg.inv(R0).dot(pts_coord_cam) - np.linalg.inv(R0).dot(T0)).astype(np.float32) ## new_pts_coord_world2
new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.) ## new_pts_colors2
pts_coord_world, pts_colors = new_pts_coord_world2.copy(), new_pts_colors2.copy()
if self.for_gradio:
progress(0, desc='[1/4] Dreaming...')
iterable_dream = progress.tqdm(range(1, len(render_poses)), desc='[1/4] Dreaming')
else:
iterable_dream = range(1, len(render_poses))
for i in iterable_dream:
R, T = render_poses[i,:3,:3], render_poses[i,:3,3:4]
### Transform world to pixel
pts_coord_cam2 = R.dot(pts_coord_world) + T ### Same with c2w*world_coord (in homogeneous space)
pixel_coord_cam2 = np.matmul(K, pts_coord_cam2) #.reshape(3,H,W).transpose(1,2,0).astype(np.float32)
valid_idx = np.where(np.logical_and.reduce((pixel_coord_cam2[2]>0,
pixel_coord_cam2[0]/pixel_coord_cam2[2]>=0,
pixel_coord_cam2[0]/pixel_coord_cam2[2]<=W-1,
pixel_coord_cam2[1]/pixel_coord_cam2[2]>=0,
pixel_coord_cam2[1]/pixel_coord_cam2[2]<=H-1)))[0]
pixel_coord_cam2 = pixel_coord_cam2[:2, valid_idx]/pixel_coord_cam2[-1:, valid_idx]
round_coord_cam2 = np.round(pixel_coord_cam2).astype(np.int32)
x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
grid = np.stack((x,y), axis=-1).reshape(-1,2)
image2 = interp_grid(pixel_coord_cam2.transpose(1,0), pts_colors[valid_idx], grid, method='linear', fill_value=0).reshape(H,W,3)
image2 = edgemask[...,None]*image2 + (1-edgemask[...,None])*np.pad(image2[1:-1,1:-1], ((1,1),(1,1),(0,0)), mode='edge')
round_mask2 = np.zeros((H,W), dtype=np.float32)
round_mask2[round_coord_cam2[1], round_coord_cam2[0]] = 1
round_mask2 = maximum_filter(round_mask2, size=(9,9), axes=(0,1))
image2 = round_mask2[...,None]*image2 + (1-round_mask2[...,None])*(-1)
mask2 = minimum_filter((image2.sum(-1)!=-3)*1, size=(11,11), axes=(0,1))
image2 = mask2[...,None]*image2 + (1-mask2[...,None])*0
mask_hf = np.abs(mask2[:H-1, :W-1] - mask2[1:, :W-1]) + np.abs(mask2[:H-1, :W-1] - mask2[:H-1, 1:])
mask_hf = np.pad(mask_hf, ((0,1), (0,1)), 'edge')
mask_hf = np.where(mask_hf < 0.3, 0, 1)
border_valid_idx = np.where(mask_hf[round_coord_cam2[1], round_coord_cam2[0]] == 1)[0] # use valid_idx[border_valid_idx] for world1
image_curr = self.rgb(
prompt=prompt, image=image2, #Image.fromarray(np.round(image2*255.).astype(np.uint8)),
negative_prompt=negative_prompt, generator=generator, num_inference_steps=diff_steps,
mask_image=mask2, #Image.fromarray(np.round((1-mask2[:,:])*255.).astype(np.uint8))
)
depth_curr = self.d(image_curr)
### depth optimize
t_z2 = torch.tensor(depth_curr)
sc = torch.ones(1).float().requires_grad_(True)
optimizer = torch.optim.Adam(params=[sc], lr=0.001)
for idx in range(100):
trans3d = torch.tensor([[sc,0,0,0], [0,sc,0,0], [0,0,sc,0], [0,0,0,1]]).requires_grad_(True)
coord_cam2 = torch.matmul(torch.tensor(np.linalg.inv(K)), torch.stack((torch.tensor(x)*t_z2, torch.tensor(y)*t_z2, 1*t_z2), axis=0)[:,round_coord_cam2[1], round_coord_cam2[0]].reshape(3,-1))
coord_world2 = (torch.tensor(np.linalg.inv(R)).float().matmul(coord_cam2) - torch.tensor(np.linalg.inv(R)).float().matmul(torch.tensor(T).float()))
coord_world2_warp = torch.cat((coord_world2, torch.ones((1,valid_idx.shape[0]))), dim=0)
coord_world2_trans = torch.matmul(trans3d, coord_world2_warp)
coord_world2_trans = coord_world2_trans[:3] / coord_world2_trans[-1]
loss = torch.mean((torch.tensor(pts_coord_world[:,valid_idx]).float() - coord_world2_trans)**2)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
coord_cam2 = torch.matmul(torch.tensor(np.linalg.inv(K)), torch.stack((torch.tensor(x)*t_z2, torch.tensor(y)*t_z2, 1*t_z2), axis=0)[:,round_coord_cam2[1, border_valid_idx], round_coord_cam2[0, border_valid_idx]].reshape(3,-1))
coord_world2 = (torch.tensor(np.linalg.inv(R)).float().matmul(coord_cam2) - torch.tensor(np.linalg.inv(R)).float().matmul(torch.tensor(T).float()))
coord_world2_warp = torch.cat((coord_world2, torch.ones((1, border_valid_idx.shape[0]))), dim=0)
coord_world2_trans = torch.matmul(trans3d, coord_world2_warp)
coord_world2_trans = coord_world2_trans[:3] / coord_world2_trans[-1]
trans3d = trans3d.detach().numpy()
pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))[:,np.where(1-mask2.reshape(-1))[0]]
camera_origin_coord_world2 = - np.linalg.inv(R).dot(T).astype(np.float32) # 3, 1
new_pts_coord_world2 = (np.linalg.inv(R).dot(pts_coord_cam2) - np.linalg.inv(R).dot(T)).astype(np.float32)
new_pts_coord_world2_warp = np.concatenate((new_pts_coord_world2, np.ones((1, new_pts_coord_world2.shape[1]))), axis=0)
new_pts_coord_world2 = np.matmul(trans3d, new_pts_coord_world2_warp)
new_pts_coord_world2 = new_pts_coord_world2[:3] / new_pts_coord_world2[-1]
new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.)[np.where(1-mask2.reshape(-1))[0]]
vector_camorigin_to_campixels = coord_world2_trans.detach().numpy() - camera_origin_coord_world2
vector_camorigin_to_pcdpixels = pts_coord_world[:,valid_idx[border_valid_idx]] - camera_origin_coord_world2
compensate_depth_coeff = np.sum(vector_camorigin_to_pcdpixels * vector_camorigin_to_campixels, axis=0) / np.sum(vector_camorigin_to_campixels * vector_camorigin_to_campixels, axis=0) # N_correspond
compensate_pts_coord_world2_correspond = camera_origin_coord_world2 + vector_camorigin_to_campixels * compensate_depth_coeff.reshape(1,-1)
compensate_coord_cam2_correspond = R.dot(compensate_pts_coord_world2_correspond) + T
homography_coord_cam2_correspond = R.dot(coord_world2_trans.detach().numpy()) + T
compensate_depth_correspond = compensate_coord_cam2_correspond[-1] - homography_coord_cam2_correspond[-1] # N_correspond
compensate_depth_zero = np.zeros(4)
compensate_depth = np.concatenate((compensate_depth_correspond, compensate_depth_zero), axis=0) # N_correspond+4
pixel_cam2_correspond = pixel_coord_cam2[:, border_valid_idx] # 2, N_correspond (xy)
pixel_cam2_zero = np.array([[0,0,W-1,W-1],[0,H-1,0,H-1]])
pixel_cam2 = np.concatenate((pixel_cam2_correspond, pixel_cam2_zero), axis=1).transpose(1,0) # N+H, 2
# Calculate for masked pixels
masked_pixels_xy = np.stack(np.where(1-mask2), axis=1)[:, [1,0]]
new_depth_linear, new_depth_nearest = interp_grid(pixel_cam2, compensate_depth, masked_pixels_xy), interp_grid(pixel_cam2, compensate_depth, masked_pixels_xy, method='nearest')
new_depth = np.where(np.isnan(new_depth_linear), new_depth_nearest, new_depth_linear)
pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))[:,np.where(1-mask2.reshape(-1))[0]]
x_nonmask, y_nonmask = x.reshape(-1)[np.where(1-mask2.reshape(-1))[0]], y.reshape(-1)[np.where(1-mask2.reshape(-1))[0]]
compensate_pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x_nonmask*new_depth, y_nonmask*new_depth, 1*new_depth), axis=0))
new_warp_pts_coord_cam2 = pts_coord_cam2 + compensate_pts_coord_cam2
new_pts_coord_world2 = (np.linalg.inv(R).dot(new_warp_pts_coord_cam2) - np.linalg.inv(R).dot(T)).astype(np.float32)
new_pts_coord_world2_warp = np.concatenate((new_pts_coord_world2, np.ones((1, new_pts_coord_world2.shape[1]))), axis=0)
new_pts_coord_world2 = np.matmul(trans3d, new_pts_coord_world2_warp)
new_pts_coord_world2 = new_pts_coord_world2[:3] / new_pts_coord_world2[-1]
new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.)[np.where(1-mask2.reshape(-1))[0]]
pts_coord_world = np.concatenate((pts_coord_world, new_pts_coord_world2), axis=-1) ### Same with inv(c2w) * cam_coord (in homogeneous space)
pts_colors = np.concatenate((pts_colors, new_pts_colors2), axis=0)
#################################################################################################
yz_reverse = np.array([[1,0,0], [0,-1,0], [0,0,-1]])
traindata = {
'camera_angle_x': self.cam.fov[0],
'W': W,
'H': H,
'pcd_points': pts_coord_world,
'pcd_colors': pts_colors,
'frames': [],
}
# render_poses = get_pcdGenPoses(pcdgenpath)
internel_render_poses = get_pcdGenPoses('hemisphere', {'center_depth': center_depth})
if self.for_gradio:
progress(0, desc='[2/4] Aligning...')
iterable_align = progress.tqdm(range(len(render_poses)), desc='[2/4] Aligning')
else:
iterable_align = range(len(render_poses))
for i in iterable_align:
for j in range(len(internel_render_poses)):
idx = i * len(internel_render_poses) + j
print(f'{idx+1} / {len(render_poses)*len(internel_render_poses)}')
### Transform world to pixel
Rw2i = render_poses[i,:3,:3]
Tw2i = render_poses[i,:3,3:4]
Ri2j = internel_render_poses[j,:3,:3]
Ti2j = internel_render_poses[j,:3,3:4]
Rw2j = np.matmul(Ri2j, Rw2i)
Tw2j = np.matmul(Ri2j, Tw2i) + Ti2j
# Transfrom cam2 to world + change sign of yz axis
Rj2w = np.matmul(yz_reverse, Rw2j).T
Tj2w = -np.matmul(Rj2w, np.matmul(yz_reverse, Tw2j))
Pc2w = np.concatenate((Rj2w, Tj2w), axis=1)
Pc2w = np.concatenate((Pc2w, np.array([[0,0,0,1]])), axis=0)
pts_coord_camj = Rw2j.dot(pts_coord_world) + Tw2j
pixel_coord_camj = np.matmul(K, pts_coord_camj)
valid_idxj = np.where(np.logical_and.reduce((pixel_coord_camj[2]>0,
pixel_coord_camj[0]/pixel_coord_camj[2]>=0,
pixel_coord_camj[0]/pixel_coord_camj[2]<=W-1,
pixel_coord_camj[1]/pixel_coord_camj[2]>=0,
pixel_coord_camj[1]/pixel_coord_camj[2]<=H-1)))[0]
if len(valid_idxj) == 0:
continue
pts_depthsj = pixel_coord_camj[-1:, valid_idxj]
pixel_coord_camj = pixel_coord_camj[:2, valid_idxj]/pixel_coord_camj[-1:, valid_idxj]
round_coord_camj = np.round(pixel_coord_camj).astype(np.int32)
x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') # pixels
grid = np.stack((x,y), axis=-1).reshape(-1,2)
imagej = interp_grid(pixel_coord_camj.transpose(1,0), pts_colors[valid_idxj], grid, method='linear', fill_value=0).reshape(H,W,3)
imagej = edgemask[...,None]*imagej + (1-edgemask[...,None])*np.pad(imagej[1:-1,1:-1], ((1,1),(1,1),(0,0)), mode='edge')
depthj = interp_grid(pixel_coord_camj.transpose(1,0), pts_depthsj.T, grid, method='linear', fill_value=0).reshape(H,W)
depthj = edgemask*depthj + (1-edgemask)*np.pad(depthj[1:-1,1:-1], ((1,1),(1,1)), mode='edge')
maskj = np.zeros((H,W), dtype=np.float32)
maskj[round_coord_camj[1], round_coord_camj[0]] = 1
maskj = maximum_filter(maskj, size=(9,9), axes=(0,1))
imagej = maskj[...,None]*imagej + (1-maskj[...,None])*(-1)
maskj = minimum_filter((imagej.sum(-1)!=-3)*1, size=(11,11), axes=(0,1))
imagej = maskj[...,None]*imagej + (1-maskj[...,None])*0
traindata['frames'].append({
'image': Image.fromarray(np.round(imagej*255.).astype(np.uint8)),
'transform_matrix': Pc2w.tolist(),
})
progress(1, desc='[3/4] Baking Gaussians...')
return traindata
|