File size: 7,425 Bytes
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b42af4
863d8a3
 
 
1b42af4
863d8a3
 
 
1099179
1b42af4
 
863d8a3
 
 
1099179
1b42af4
 
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b42af4
 
863d8a3
 
 
 
 
 
 
 
 
e3a17c0
 
 
 
 
 
 
863d8a3
 
 
 
 
 
 
 
 
 
 
1b42af4
 
863d8a3
 
 
 
 
 
 
 
 
 
e3a17c0
 
 
 
 
 
 
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a17c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from openai import AzureOpenAI, OpenAI,AsyncAzureOpenAI,AsyncOpenAI

from abc import abstractmethod
import os
import httpx
import base64
import logging
import asyncio
import numpy as np
from tenacity import (
    retry,
    stop_after_attempt,
    wait_fixed,
)


def get_content_between_a_b(start_tag, end_tag, text):
    extracted_text = ""
    start_index = text.find(start_tag)
    while start_index != -1:
        end_index = text.find(end_tag, start_index + len(start_tag))
        if end_index != -1:
            extracted_text += text[start_index + len(start_tag) : end_index] + " "
            start_index = text.find(start_tag, end_index + len(end_tag))
        else:
            break

    return extracted_text.strip()

def before_retry_fn(retry_state):
    if retry_state.attempt_number > 1:
        logging.info(f"Retrying API call. Attempt #{retry_state.attempt_number}, f{retry_state}")

def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

def get_openai_url(img_pth):
    end = img_pth.split(".")[-1]
    if end == "jpg":
        end = "jpeg"
    base64_image = encode_image(img_pth)
    return f"data:image/{end};base64,{base64_image}"

class base_llm:
    def __init__(self) -> None:
        pass
    
    @abstractmethod
    def response(self,messages,**kwargs):
        pass

    def get_imgs(self,prompt, save_path="saves/dalle3.jpg"):
        pass



class openai_llm(base_llm):
    def __init__(self,model = None,deployment = None,endpoint=None,api_key = None) -> None:
        super().__init__()
        self.model = model
        
        api_version= "2024-02-15-preview"
        if api_version == "":
            api_version = None
        self.client = AzureOpenAI(
            azure_deployment= deployment,
            azure_endpoint=endpoint,
            api_key=api_key,
            api_version= api_version
            )
        self.async_client = AsyncAzureOpenAI(
            azure_deployment= deployment,
            azure_endpoint=endpoint,
            api_key=api_key,
            api_version= api_version
            )

    
    def cal_cosine_similarity(self, vec1, vec2):
        if isinstance(vec1, list):
            vec1 = np.array(vec1)
        if isinstance(vec2, list):
            vec2 = np.array(vec2)
        return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
    
    
    @retry(wait=wait_fixed(10), stop=stop_after_attempt(10), before=before_retry_fn)
    def response(self,messages,**kwargs):
        try:
            response = self.client.chat.completions.create(
                model=kwargs.get("model", self.model),
                messages=messages,
                n = kwargs.get("n", 1),
                temperature= kwargs.get("temperature", 0.7),
                max_tokens=kwargs.get("max_tokens", 4000),
                timeout=kwargs.get("timeout", 180)
            )
        except Exception as e:
            model = kwargs.get("model", self.model)
            print(f"get {model} response failed: {e}")
            print(e)
            logging.info(e)
            return
        return response.choices[0].message.content
    
    @retry(wait=wait_fixed(10), stop=stop_after_attempt(10), before=before_retry_fn)
    def get_embbeding(self,text):
        if os.environ.get("EMBEDDING_API_ENDPOINT"):
            client = AzureOpenAI(
            azure_endpoint=os.environ.get("EMBEDDING_API_ENDPOINT",None),
            api_key=os.environ.get("EMBEDDING_API_KEY",None),
            api_version= "2024-02-15-preview",
            azure_deployment="text-embedding-3-large"
            )
        else:
            client = self.client
        try:
            embbeding = client.embeddings.create(
                model=os.environ.get("EMBEDDING_MODEL","text-embedding-3-large"),
                input=text,
                timeout= 180
            )
            embbeding = embbeding.data
            if len(embbeding) == 0:
                return None
            elif len(embbeding) == 1:
                return embbeding[0].embedding
            else:
                return [e.embedding for e in embbeding]
        except Exception as e:
            print(f"get embbeding failed: {e}")
            print(e)
            logging.info(e)
            return
    
    async def get_embbeding_async(self,text):
        if os.environ.get("EMBEDDING_API_ENDPOINT",None):
            async_client = AsyncAzureOpenAI(
            azure_endpoint=os.environ.get("EMBEDDING_API_ENDPOINT",None),
            api_key=os.environ.get("EMBEDDING_API_KEY",None),
            api_version= "2024-02-15-preview",
            azure_deployment="text-embedding-3-large"
            )
        else:
            async_client = self.async_client

        try:
            embbeding = await async_client.embeddings.create(
                model=os.environ.get("EMBEDDING_MODEL","text-embedding-3-large"),
                input=text,
                timeout= 180
            )
            embbeding = embbeding.data
            if len(embbeding) == 0:
                return None
            elif len(embbeding) == 1:
                return embbeding[0].embedding
            else:
                return [e.embedding for e in embbeding]
        except Exception as e:
            await asyncio.sleep(0.1)
            print(f"get embbeding failed: {e}")
            print(e)
            logging.info(e)
            return
    
    @retry(wait=wait_fixed(10), stop=stop_after_attempt(10), before=before_retry_fn)
    async def response_async(self,messages,**kwargs):
        try:
            response = await self.async_client.chat.completions.create(
                model=kwargs.get("model", self.model),
                messages=messages,
                n = kwargs.get("n", 1),
                temperature= kwargs.get("temperature", 0.7),
                max_tokens=kwargs.get("max_tokens", 4000),
                timeout=kwargs.get("timeout", 180)
            )
        except Exception as e:
            await asyncio.sleep(0.1)
            model = kwargs.get("model", self.model)
            print(f"get {model} response failed: {e}")
            print(e)
            logging.info(e)
            return

        return response.choices[0].message.content


if __name__ == "__main__":
    import os
    import yaml

    def cal_cosine_similarity_matric(matric1, matric2):
        if isinstance(matric1, list):
            matric1 = np.array(matric1)
        if isinstance(matric2, list):
            matric2 = np.array(matric2)
        if len(matric1.shape) == 1:
            matric1 = matric1.reshape(1, -1)
        if len(matric2.shape) == 1:
            matric2 = matric2.reshape(1, -1)
        dot_product = np.dot(matric1, matric2.T)
        norm1 = np.linalg.norm(matric1, axis=1)
        norm2 = np.linalg.norm(matric2, axis=1)

        cos_sim = dot_product / np.outer(norm1, norm2)
        scores = cos_sim.flatten()
        # 返回一个list
        return scores.tolist()
    
    texts = ["What is the capital of France?","What is the capital of Spain?", "What is the capital of Italy?", "What is the capital of Germany?"]
    text = "What is the capital of France?"
    llm = openai_llm()
    embbedings = llm.get_embbeding(texts)
    embbeding = llm.get_embbeding(text)

    scores = cal_cosine_similarity_matric(embbedings, embbeding)
    print(scores)