DCuong's picture
Create app.py
7872d4b verified
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
from supervision import Detections
import cv2
import gradio as gr
from PIL import Image
import numpy as np
model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
model = YOLO(model_path)
def detect_faces(image):
output = model(image)
results = Detections.from_ultralytics(output[0])
im = np.array(image)
for i in results:
im = cv2.rectangle(im, (int(i[0][0]),int(i[0][1])), (int(i[0][2]),int(i[0][3])), (0,0,255), 2)
image_np = np.array(image)
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
for (x, y, w, h) in faces:
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
return (image_np,im)
interface = gr.Interface(
fn=detect_faces,
inputs="image",
outputs=["image","image"],
title="Face Detection Deep Learning",
description="Upload an image, and the model will detect faces and draw bounding boxes around them.",
)
interface.launch()