Spaces:
Runtime error
Runtime error
File size: 13,223 Bytes
cc8b578 8752a92 cc8b578 8752a92 cc8b578 8752a92 cc8b578 8752a92 cc8b578 8752a92 cc8b578 8752a92 cc8b578 8752a92 cc8b578 8752a92 cc8b578 8752a92 cc8b578 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
from apscheduler.schedulers.background import BackgroundScheduler
import datetime
import os
from typing import Dict, Tuple
from uuid import UUID
import altair as alt
import argilla as rg
from argilla.feedback import FeedbackDataset
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
from huggingface_hub import restart_space
import gradio as gr
import pandas as pd
"""
This is the main file for the dashboard application. It contains the main function and the functions to obtain the data and create the charts.
It's designed as a template to recreate the dashboard for the prompt translation project of any language.
To create a new dashboard, you need several environment variables, that you can easily set in the HuggingFace Space that you are using to host the dashboard:
- HF_TOKEN: Token with write access from your Hugging Face account: https://huggingface.co/settings/tokens
- SOURCE_DATASET: The dataset id of the source dataset
- SOURCE_WORKSPACE: The workspace id of the source dataset
- TARGET_RECORDS: The number of records that you have as a target to annotate. We usually set this to 500.
- ARGILLA_API_URL: Link to the Huggingface Space where the annotation effort is being hosted. For example, the Spanish one is https://somosnlp-dibt-prompt-translation-for-es.hf.space/
- ARGILLA_API_KEY: The API key to access the Huggingface Space. Please, write this as a secret in the Huggingface Space configuration.
"""
# Translation of legends and titles
ANNOTATED = 'Annotationen'
NUMBER_ANNOTATED = 'Annotationen Gesamt'
PENDING = 'Ausstehend'
NUMBER_ANNOTATORS = "Anzahl der Annotierenden"
NAME = 'Nutzername'
NUMBER_ANNOTATIONS = 'Anzahl der Annotationen'
CATEGORY = "Category"
def restart() -> None:
"""
This function restarts the space where the dashboard is hosted.
"""
# Update Space name with your Space information
gr.Info("Restarting space at " + str(datetime.datetime.now()))
restart_space(
"ignacioct/TryingRestartDashboard",
token=os.getenv("HF_TOKEN"),
# factory_reboot=True,
)
def obtain_source_target_datasets() -> (
Tuple[
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
]
):
"""
This function returns the source and target datasets to be used in the application.
Returns:
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
"""
# Obtain the public dataset and see how many pending records are there
source_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
)
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
# Obtain a list of users from the private workspace
# target_dataset = rg.FeedbackDataset.from_argilla(
# os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
# )
target_dataset = source_dataset.filter_by(response_status=["submitted"])
return filtered_source_dataset, target_dataset
def get_user_annotations_dictionary(
dataset: FeedbackDataset | RemoteFeedbackDataset,
) -> Dict[str, int]:
"""
This function returns a dictionary with the username as the key and the number of annotations as the value.
Args:
dataset: The dataset to be analyzed.
Returns:
A dictionary with the username as the key and the number of annotations as the value.
"""
output = {}
for record in dataset:
for response in record.responses:
if str(response.user_id) not in output.keys():
output[str(response.user_id)] = 1
else:
output[str(response.user_id)] += 1
# Changing the name of the keys, from the id to the username
for key in list(output.keys()):
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
return output
def donut_chart_total() -> alt.Chart:
"""
This function returns a donut chart with the progress of the total annotations.
Counts each record that has been annotated at least once.
Returns:
An altair chart with the donut chart.
"""
# Load your data
annotated_records = len(target_dataset)
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
# Prepare data for the donut chart
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": [ANNOTATED, PENDING],
"colors": [
"#4682b4",
"#e68c39",
], # Blue for Completed, Orange for Remaining
}
)
domain = source["category"].tolist()
range_ = source["colors"].tolist()
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color(
field="category",
type="nominal",
scale=alt.Scale(domain=domain, range=range_),
legend=alt.Legend(title=CATEGORY),
),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=20).encode(text="values:Q")
chart = c1 + c2
return chart
def kpi_chart_remaining() -> alt.Chart:
"""
This function returns a KPI chart with the remaining amount of records to be annotated.
Returns:
An altair chart with the KPI chart.
"""
pending_records = int(os.getenv("TARGET_RECORDS")) - len(target_dataset)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [PENDING], "Value": [pending_records]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="#e68b39")
.encode(text="Value:N")
.properties(title=PENDING, width=250, height=200)
)
return chart
def kpi_chart_submitted() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of records that have been annotated.
Returns:
An altair chart with the KPI chart.
"""
total = len(target_dataset)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [NUMBER_ANNOTATED], "Value": [total]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title=NUMBER_ANNOTATED, width=250, height=200)
)
return chart
def kpi_chart_total_annotators() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotators.
Returns:
An altair chart with the KPI chart.
"""
# Obtain the total amount of annotators
total_annotators = len(user_ids_annotations)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [NUMBER_ANNOTATORS], "Value": [total_annotators]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title=NUMBER_ANNOTATORS, width=250, height=200)
)
return chart
def render_hub_user_link(hub_id:str) -> str:
"""
This function returns a link to the user's profile on Hugging Face.
Args:
hub_id: The user's id on Hugging Face.
Returns:
A string with the link to the user's profile on Hugging Face.
"""
link = f"https://huggingface.co/{hub_id}"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
def obtain_top_users(user_ids_annotations: Dict[str, int], N: int = 50) -> pd.DataFrame:
"""
This function returns the top N users with the most annotations.
Args:
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
Returns:
A pandas dataframe with the top N users with the most annotations.
"""
dataframe = pd.DataFrame(
user_ids_annotations.items(), columns=[NAME, NUMBER_ANNOTATIONS]
)
dataframe[NAME] = dataframe[NAME].apply(render_hub_user_link)
dataframe = dataframe.sort_values(by=NUMBER_ANNOTATIONS, ascending=False)
return dataframe.head(N)
def fetch_data() -> None:
"""
This function fetches the data from the source and target datasets and updates the global variables.
"""
print(f"Starting to fetch data: {datetime.datetime.now()}")
global source_dataset, target_dataset, user_ids_annotations, annotated, remaining, percentage_completed, top_dataframe
source_dataset, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
annotated = len(target_dataset)
remaining = int(os.getenv("TARGET_RECORDS")) - annotated
percentage_completed = round(
(annotated / int(os.getenv("TARGET_RECORDS"))) * 100, 1
)
# Print the current date and time
print(f"Data fetched: {datetime.datetime.now()}")
def get_top(N = 50) -> pd.DataFrame:
"""
This function returns the top N users with the most annotations.
Args:
N: The number of users to be returned. 50 by default
Returns:
A pandas dataframe with the top N users with the most annotations.
"""
return obtain_top_users(user_ids_annotations, N=N)
def main() -> None:
# Connect to the space with rg.init()
rg.init(
api_url=os.getenv("ARGILLA_API_URL"),
api_key=os.getenv("ARGILLA_API_KEY"),
)
# Fetch the data initially
fetch_data()
# To avoid the orange border for the Gradio elements that are in constant loading
css = """
.generating {
border: none;
}
"""
with gr.Blocks(css=css, delete_cache=(300, 300)) as demo:
gr.Markdown(
"""
# 🌍 Deutsch - Multilingual Prompt Evaluation Project
Hugging Face und @argilla haben das [Multilingual Prompt Evaluation Project](https://github.com/huggingface/data-is-better-together/tree/main/prompt_translation) ins Leben gerufen. Es handelt sich dabei um ein offenes, mehrsprachiges Benchmark zur Evaluation von Sprachmodellen, natürlich auch für Deutsch.
## Ziel ist es, 500 Prompts zu übersetzen
Und wie immer gilt: dafür werden Daten benötigt! Die Community hat die besten 500 Prompts ausgewählt, die den Benchmark bilden werden. Auf Englisch, natürlich.
**Deshalb brauchen wir Deine Unterstützung**: wenn wir alle 500 Prompts übersetzen, können wir Deutsch in das Leaderboard aufnehmen.
## Wie Du mitmachen kannst
Mitmachen ist ganz einfach. Gehe zum [Annotationsspace](https://dibt-german-prompt-translation-for-german.hf.space), logge Dich ein oder erstelle einen Hugging Face Account, und lege los.
Vielen Dank im Voraus! Oh, und wir geben Dir ein bisschen Starthilfe: GPT4 hat bereits Übersetzungsvorschläge für Dich vorbereitet, die Du nur noch validieren oder anpassen musst.
"""
)
gr.Markdown(
f"""
## 🚀 Aktueller Fortschritt
Das haben wir bisher erreicht!
"""
)
with gr.Row():
kpi_submitted_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_submitted,
inputs=[],
outputs=[kpi_submitted_plot],
)
kpi_remaining_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_remaining,
inputs=[],
outputs=[kpi_remaining_plot],
)
donut_total_plot = gr.Plot(label="Plot")
demo.load(
donut_chart_total,
inputs=[],
outputs=[donut_total_plot],
)
gr.Markdown(
"""
## 👾 Hall of Fame
Hier kannst Du sehen, wer bisher die meisten Annotationen beigetragen hat.
"""
)
with gr.Row():
kpi_hall_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_total_annotators, inputs=[], outputs=[kpi_hall_plot]
)
top_df_plot = gr.Dataframe(
headers=[NAME, NUMBER_ANNOTATIONS],
datatype=[
"markdown",
"number",
],
row_count=50,
col_count=(2, "fixed"),
interactive=False,
)
demo.load(get_top, None, [top_df_plot])
# Manage background refresh
scheduler = BackgroundScheduler()
_ = scheduler.add_job(restart, "interval", minutes=30)
scheduler.start()
# Launch the Gradio interface
demo.launch()
if __name__ == "__main__":
main() |