|
import warnings |
|
warnings.simplefilter('ignore') |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from transformers import DistilBertTokenizer, DistilBertModel |
|
import logging |
|
logging.basicConfig(level=logging.ERROR) |
|
from torch import cuda |
|
import gradio as gr |
|
|
|
def classify(sentence): |
|
output = "" |
|
class DistilBERTClass(nn.Module): |
|
def __init__(self, num_intents): |
|
super(DistilBERTClass, self).__init__() |
|
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased") |
|
self.fc1 = nn.Sequential( |
|
nn.Linear(768, 64), |
|
nn.BatchNorm1d(64), |
|
nn.ReLU(), |
|
) |
|
self.fc2 = nn.Sequential( |
|
nn.Linear(64, num_intents) |
|
) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask) |
|
hidden_state = output_1[0] |
|
pooler = hidden_state[:, 0] |
|
pooler = self.fc1(pooler) |
|
output = self.fc2(pooler) |
|
return output |
|
|
|
user_intents = ['initial_query', 'greeting', 'add_filter', 'remove_filter', 'continue', 'accept_response', 'reject_response'] |
|
musical_attributes = ['track', 'artist', 'year', 'popularity', 'culture', 'similar_track', 'similar_artist', 'user', 'theme', 'mood', 'genre', 'instrument', 'vocal', 'tempo'] |
|
intents_dict = {"user": user_intents, "music": musical_attributes} |
|
num_intents_dict = {'user': 7, 'music': 14} |
|
|
|
device = 'cuda:0' if cuda.is_available() else 'cpu' |
|
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") |
|
|
|
for data_type in ["user", "music"]: |
|
num_intents = num_intents_dict[data_type] |
|
|
|
model = DistilBERTClass(num_intents) |
|
model.load_state_dict(torch.load(f"./models/{data_type}_finetune_model.pth", map_location=torch.device('cpu'))) |
|
model.to(device) |
|
|
|
|
|
inputs = tokenizer.encode_plus( |
|
sentence, |
|
None, |
|
add_special_tokens=True, |
|
max_length=128, |
|
pad_to_max_length=True, |
|
return_token_type_ids=False, |
|
return_attention_mask=True, |
|
truncation=True |
|
) |
|
|
|
input_ids = torch.tensor(inputs['input_ids']).unsqueeze(0).to(device) |
|
attention_mask = torch.tensor(inputs['attention_mask']).unsqueeze(0).to(device) |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(input_ids, attention_mask) |
|
probability_outputs = torch.sigmoid(outputs).cpu().detach().numpy() |
|
|
|
binary_outputs = (probability_outputs >= 0.5) |
|
binary_outputs[np.all(binary_outputs == False, axis=1), -1] = True |
|
|
|
intents = intents_dict[data_type] |
|
predicted_intents = [intent for i, intent in enumerate(intents) if binary_outputs[0][i] == 1] |
|
|
|
if data_type=="user": |
|
output += f"User Intents: {predicted_intents}\n" |
|
else: |
|
output += f"Musical Attributes: {predicted_intents}\n" |
|
return output |
|
|
|
title = "User Intents and Musical Attributes Classifier" |
|
description = """ |
|
You can engage in a conversation with the music recommendation system, imagining a situation where it recommends music to you. The model will then predict the intents and musical attributes based on the sentence you provide. |
|
<img src="https://github.com/user-attachments/assets/a8bfb1dc-856b-4f85-82dd-510cddcc2aeb" width=400px> |
|
""" |
|
article = "For more information, visit [Github Repository.](https://github.com/DaeyongKwon98/Intent-Classification/tree/main)" |
|
|
|
demo = gr.Interface( |
|
fn=classify, |
|
inputs="text", |
|
outputs="text", |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[["Hi, I need a playlist of rock songs to listen when I exercise."], ["I love Ariana Grande! Give me more."], ["I think these are too fast for me."]], |
|
) |
|
|
|
demo.launch() |