File size: 5,017 Bytes
49e74da
9dc56a0
 
 
 
 
 
 
 
9195e0a
9dc56a0
 
 
 
 
9195e0a
9dc56a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9195e0a
9dc56a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import os
from langchain.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from sentence_transformers import SentenceTransformer
from langchain_ollama import ChatOllama
import re
import torch



def preprocessing_text(document: list) -> list:
    document[0].page_content = re.sub(r"\n{2,}", "\n\n", document[0].page_content)
    return document

def loading_the_webpage(url: str) -> list:
    loader = WebBaseLoader(url)
    document = preprocessing_text(loader.load())
    return document


def chunking(document: list) -> list:
    text_splitter = RecursiveCharacterTextSplitter(chunk_size= 1024, 
                                               chunk_overlap= 128, 
                                               separators= ["\n\n", "\n", " ", ""])
    return text_splitter.split_documents(documents= document)



def create_vector_db(chunked_documents):
    embeddings = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
    vector_db = FAISS.from_documents(chunked_documents, embeddings)
    return vector_db


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm = ChatOllama(model= "mistral",
                    temperature= temperature,
                    top_k= top_k, 
                    num_predict= max_tokens)
    
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    retriever=vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

def process_url_and_query(url: str, query: str):
    # Load and process the webpage
    documents = loading_the_webpage(url)
    documents = preprocessing_text(documents)
    
    # Chunk the documents
    chunked_documents = chunking(documents)
    
    # Create a vector database from chunked documents
    vector_db = create_vector_db(chunked_documents)
    
    # Initialize the LLM chain
    qa_chain = initialize_llmchain(llm_model="mistral", temperature=0.7, max_tokens=150, top_k=5, vector_db=vector_db)
    
    # Get the answer for the user's query
    answer = qa_chain({"question": query})
    
    return answer['answer']

with gr.Blocks() as demo:
    gr.Markdown("# Webpage Querying App")
    
    url_input = gr.Textbox(label="Enter URL")
    query_input = gr.Textbox(label="Enter your query")
    
    submit_button = gr.Button("Submit")
    
    output_textbox = gr.Textbox(label="Response", interactive=False)

    submit_button.click(process_url_and_query, inputs=[url_input, query_input], outputs=output_textbox)

# Launch the app
demo.launch()































# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response


# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()