import gradio as gr import os from langchain.document_loaders import WebBaseLoader from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains import ConversationalRetrievalChain from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_community.llms import HuggingFaceEndpoint from sentence_transformers import SentenceTransformer from langchain_ollama import ChatOllama import re import torch def preprocessing_text(document: list) -> list: document[0].page_content = re.sub(r"\n{2,}", "\n\n", document[0].page_content) return document def loading_the_webpage(url: str) -> list: loader = WebBaseLoader(url) document = preprocessing_text(loader.load()) return document def chunking(document: list) -> list: text_splitter = RecursiveCharacterTextSplitter(chunk_size= 1024, chunk_overlap= 128, separators= ["\n\n", "\n", " ", ""]) return text_splitter.split_documents(documents= document) def create_vector_db(chunked_documents): embeddings = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) vector_db = FAISS.from_documents(chunked_documents, embeddings) return vector_db # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm = ChatOllama(model= "mistral", temperature= temperature, top_k= top_k, num_predict= max_tokens) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever=vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) return qa_chain def process_url_and_query(url: str, query: str): # Load and process the webpage documents = loading_the_webpage(url) documents = preprocessing_text(documents) # Chunk the documents chunked_documents = chunking(documents) # Create a vector database from chunked documents vector_db = create_vector_db(chunked_documents) # Initialize the LLM chain qa_chain = initialize_llmchain(llm_model="mistral", temperature=0.7, max_tokens=150, top_k=5, vector_db=vector_db) # Get the answer for the user's query answer = qa_chain({"question": query}) return answer['answer'] with gr.Blocks() as demo: gr.Markdown("# Webpage Querying App") url_input = gr.Textbox(label="Enter URL") query_input = gr.Textbox(label="Enter your query") submit_button = gr.Button("Submit") output_textbox = gr.Textbox(label="Response", interactive=False) submit_button.click(process_url_and_query, inputs=[url_input, query_input], outputs=output_textbox) # Launch the app demo.launch() # import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch()