File size: 53,116 Bytes
cba094e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
import os
import random

import cv2
import torch
import numpy as np
import torch.fft as fft

from lama_cleaner.schema import Config

from lama_cleaner.helper import load_model, get_cache_path_by_url, norm_img, boxes_from_mask, resize_max_size
from lama_cleaner.model.base import InpaintModel
from torch import conv2d, nn
import torch.nn.functional as F

from lama_cleaner.model.utils import setup_filter, _parse_scaling, _parse_padding, Conv2dLayer, FullyConnectedLayer, \
    MinibatchStdLayer, activation_funcs, conv2d_resample, bias_act, upsample2d, normalize_2nd_moment, downsample2d


def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'):
    assert isinstance(x, torch.Tensor)
    return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain)


def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
    """Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.
    """
    # Validate arguments.
    assert isinstance(x, torch.Tensor) and x.ndim == 4
    if f is None:
        f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
    assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
    assert f.dtype == torch.float32 and not f.requires_grad
    batch_size, num_channels, in_height, in_width = x.shape
    upx, upy = _parse_scaling(up)
    downx, downy = _parse_scaling(down)
    padx0, padx1, pady0, pady1 = _parse_padding(padding)

    # Upsample by inserting zeros.
    x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
    x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
    x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])

    # Pad or crop.
    x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)])
    x = x[:, :, max(-pady0, 0): x.shape[2] - max(-pady1, 0), max(-padx0, 0): x.shape[3] - max(-padx1, 0)]

    # Setup filter.
    f = f * (gain ** (f.ndim / 2))
    f = f.to(x.dtype)
    if not flip_filter:
        f = f.flip(list(range(f.ndim)))

    # Convolve with the filter.
    f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
    if f.ndim == 4:
        x = conv2d(input=x, weight=f, groups=num_channels)
    else:
        x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
        x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)

    # Downsample by throwing away pixels.
    x = x[:, :, ::downy, ::downx]
    return x


class EncoderEpilogue(torch.nn.Module):
    def __init__(self,
                 in_channels,  # Number of input channels.
                 cmap_dim,  # Dimensionality of mapped conditioning label, 0 = no label.
                 z_dim,  # Output Latent (Z) dimensionality.
                 resolution,  # Resolution of this block.
                 img_channels,  # Number of input color channels.
                 architecture='resnet',  # Architecture: 'orig', 'skip', 'resnet'.
                 mbstd_group_size=4,  # Group size for the minibatch standard deviation layer, None = entire minibatch.
                 mbstd_num_channels=1,  # Number of features for the minibatch standard deviation layer, 0 = disable.
                 activation='lrelu',  # Activation function: 'relu', 'lrelu', etc.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 ):
        assert architecture in ['orig', 'skip', 'resnet']
        super().__init__()
        self.in_channels = in_channels
        self.cmap_dim = cmap_dim
        self.resolution = resolution
        self.img_channels = img_channels
        self.architecture = architecture

        if architecture == 'skip':
            self.fromrgb = Conv2dLayer(self.img_channels, in_channels, kernel_size=1, activation=activation)
        self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size,
                                       num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None
        self.conv = Conv2dLayer(in_channels + mbstd_num_channels, in_channels, kernel_size=3, activation=activation,
                                conv_clamp=conv_clamp)
        self.fc = FullyConnectedLayer(in_channels * (resolution ** 2), z_dim, activation=activation)
        self.dropout = torch.nn.Dropout(p=0.5)

    def forward(self, x, cmap, force_fp32=False):
        _ = force_fp32  # unused
        dtype = torch.float32
        memory_format = torch.contiguous_format

        # FromRGB.
        x = x.to(dtype=dtype, memory_format=memory_format)

        # Main layers.
        if self.mbstd is not None:
            x = self.mbstd(x)
        const_e = self.conv(x)
        x = self.fc(const_e.flatten(1))
        x = self.dropout(x)

        # Conditioning.
        if self.cmap_dim > 0:
            x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))

        assert x.dtype == dtype
        return x, const_e


class EncoderBlock(torch.nn.Module):
    def __init__(self,
                 in_channels,  # Number of input channels, 0 = first block.
                 tmp_channels,  # Number of intermediate channels.
                 out_channels,  # Number of output channels.
                 resolution,  # Resolution of this block.
                 img_channels,  # Number of input color channels.
                 first_layer_idx,  # Index of the first layer.
                 architecture='skip',  # Architecture: 'orig', 'skip', 'resnet'.
                 activation='lrelu',  # Activation function: 'relu', 'lrelu', etc.
                 resample_filter=[1, 3, 3, 1],  # Low-pass filter to apply when resampling activations.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 use_fp16=False,  # Use FP16 for this block?
                 fp16_channels_last=False,  # Use channels-last memory format with FP16?
                 freeze_layers=0,  # Freeze-D: Number of layers to freeze.
                 ):
        assert in_channels in [0, tmp_channels]
        assert architecture in ['orig', 'skip', 'resnet']
        super().__init__()
        self.in_channels = in_channels
        self.resolution = resolution
        self.img_channels = img_channels + 1
        self.first_layer_idx = first_layer_idx
        self.architecture = architecture
        self.use_fp16 = use_fp16
        self.channels_last = (use_fp16 and fp16_channels_last)
        self.register_buffer('resample_filter', setup_filter(resample_filter))

        self.num_layers = 0

        def trainable_gen():
            while True:
                layer_idx = self.first_layer_idx + self.num_layers
                trainable = (layer_idx >= freeze_layers)
                self.num_layers += 1
                yield trainable

        trainable_iter = trainable_gen()

        if in_channels == 0:
            self.fromrgb = Conv2dLayer(self.img_channels, tmp_channels, kernel_size=1, activation=activation,
                                       trainable=next(trainable_iter), conv_clamp=conv_clamp,
                                       channels_last=self.channels_last)

        self.conv0 = Conv2dLayer(tmp_channels, tmp_channels, kernel_size=3, activation=activation,
                                 trainable=next(trainable_iter), conv_clamp=conv_clamp,
                                 channels_last=self.channels_last)

        self.conv1 = Conv2dLayer(tmp_channels, out_channels, kernel_size=3, activation=activation, down=2,
                                 trainable=next(trainable_iter), resample_filter=resample_filter, conv_clamp=conv_clamp,
                                 channels_last=self.channels_last)

        if architecture == 'resnet':
            self.skip = Conv2dLayer(tmp_channels, out_channels, kernel_size=1, bias=False, down=2,
                                    trainable=next(trainable_iter), resample_filter=resample_filter,
                                    channels_last=self.channels_last)

    def forward(self, x, img, force_fp32=False):
        # dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
        dtype = torch.float32
        memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format

        # Input.
        if x is not None:
            x = x.to(dtype=dtype, memory_format=memory_format)

        # FromRGB.
        if self.in_channels == 0:
            img = img.to(dtype=dtype, memory_format=memory_format)
            y = self.fromrgb(img)
            x = x + y if x is not None else y
            img = downsample2d(img, self.resample_filter) if self.architecture == 'skip' else None

        # Main layers.
        if self.architecture == 'resnet':
            y = self.skip(x, gain=np.sqrt(0.5))
            x = self.conv0(x)
            feat = x.clone()
            x = self.conv1(x, gain=np.sqrt(0.5))
            x = y.add_(x)
        else:
            x = self.conv0(x)
            feat = x.clone()
            x = self.conv1(x)

        assert x.dtype == dtype
        return x, img, feat


class EncoderNetwork(torch.nn.Module):
    def __init__(self,
                 c_dim,  # Conditioning label (C) dimensionality.
                 z_dim,  # Input latent (Z) dimensionality.
                 img_resolution,  # Input resolution.
                 img_channels,  # Number of input color channels.
                 architecture='orig',  # Architecture: 'orig', 'skip', 'resnet'.
                 channel_base=16384,  # Overall multiplier for the number of channels.
                 channel_max=512,  # Maximum number of channels in any layer.
                 num_fp16_res=0,  # Use FP16 for the N highest resolutions.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 cmap_dim=None,  # Dimensionality of mapped conditioning label, None = default.
                 block_kwargs={},  # Arguments for DiscriminatorBlock.
                 mapping_kwargs={},  # Arguments for MappingNetwork.
                 epilogue_kwargs={},  # Arguments for EncoderEpilogue.
                 ):
        super().__init__()
        self.c_dim = c_dim
        self.z_dim = z_dim
        self.img_resolution = img_resolution
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels = img_channels
        self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)

        if cmap_dim is None:
            cmap_dim = channels_dict[4]
        if c_dim == 0:
            cmap_dim = 0

        common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
        cur_layer_idx = 0
        for res in self.block_resolutions:
            in_channels = channels_dict[res] if res < img_resolution else 0
            tmp_channels = channels_dict[res]
            out_channels = channels_dict[res // 2]
            use_fp16 = (res >= fp16_resolution)
            use_fp16 = False
            block = EncoderBlock(in_channels, tmp_channels, out_channels, resolution=res,
                                 first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
            setattr(self, f'b{res}', block)
            cur_layer_idx += block.num_layers
        if c_dim > 0:
            self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None,
                                          **mapping_kwargs)
        self.b4 = EncoderEpilogue(channels_dict[4], cmap_dim=cmap_dim, z_dim=z_dim * 2, resolution=4, **epilogue_kwargs,
                                  **common_kwargs)

    def forward(self, img, c, **block_kwargs):
        x = None
        feats = {}
        for res in self.block_resolutions:
            block = getattr(self, f'b{res}')
            x, img, feat = block(x, img, **block_kwargs)
            feats[res] = feat

        cmap = None
        if self.c_dim > 0:
            cmap = self.mapping(None, c)
        x, const_e = self.b4(x, cmap)
        feats[4] = const_e

        B, _ = x.shape
        z = torch.zeros((B, self.z_dim), requires_grad=False, dtype=x.dtype,
                        device=x.device)  ## Noise for Co-Modulation
        return x, z, feats


def fma(a, b, c):  # => a * b + c
    return _FusedMultiplyAdd.apply(a, b, c)


class _FusedMultiplyAdd(torch.autograd.Function):  # a * b + c
    @staticmethod
    def forward(ctx, a, b, c):  # pylint: disable=arguments-differ
        out = torch.addcmul(c, a, b)
        ctx.save_for_backward(a, b)
        ctx.c_shape = c.shape
        return out

    @staticmethod
    def backward(ctx, dout):  # pylint: disable=arguments-differ
        a, b = ctx.saved_tensors
        c_shape = ctx.c_shape
        da = None
        db = None
        dc = None

        if ctx.needs_input_grad[0]:
            da = _unbroadcast(dout * b, a.shape)

        if ctx.needs_input_grad[1]:
            db = _unbroadcast(dout * a, b.shape)

        if ctx.needs_input_grad[2]:
            dc = _unbroadcast(dout, c_shape)

        return da, db, dc


def _unbroadcast(x, shape):
    extra_dims = x.ndim - len(shape)
    assert extra_dims >= 0
    dim = [i for i in range(x.ndim) if x.shape[i] > 1 and (i < extra_dims or shape[i - extra_dims] == 1)]
    if len(dim):
        x = x.sum(dim=dim, keepdim=True)
    if extra_dims:
        x = x.reshape(-1, *x.shape[extra_dims + 1:])
    assert x.shape == shape
    return x


def modulated_conv2d(
    x,  # Input tensor of shape [batch_size, in_channels, in_height, in_width].
    weight,  # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
    styles,  # Modulation coefficients of shape [batch_size, in_channels].
    noise=None,  # Optional noise tensor to add to the output activations.
    up=1,  # Integer upsampling factor.
    down=1,  # Integer downsampling factor.
    padding=0,  # Padding with respect to the upsampled image.
    resample_filter=None,
    # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
    demodulate=True,  # Apply weight demodulation?
    flip_weight=True,  # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
    fused_modconv=True,  # Perform modulation, convolution, and demodulation as a single fused operation?
):
    batch_size = x.shape[0]
    out_channels, in_channels, kh, kw = weight.shape

    # Pre-normalize inputs to avoid FP16 overflow.
    if x.dtype == torch.float16 and demodulate:
        weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1, 2, 3],
                                                                            keepdim=True))  # max_Ikk
        styles = styles / styles.norm(float('inf'), dim=1, keepdim=True)  # max_I

    # Calculate per-sample weights and demodulation coefficients.
    w = None
    dcoefs = None
    if demodulate or fused_modconv:
        w = weight.unsqueeze(0)  # [NOIkk]
        w = w * styles.reshape(batch_size, 1, -1, 1, 1)  # [NOIkk]
    if demodulate:
        dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt()  # [NO]
    if demodulate and fused_modconv:
        w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1)  # [NOIkk]
    # Execute by scaling the activations before and after the convolution.
    if not fused_modconv:
        x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
        x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down,
                                            padding=padding, flip_weight=flip_weight)
        if demodulate and noise is not None:
            x = fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype))
        elif demodulate:
            x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
        elif noise is not None:
            x = x.add_(noise.to(x.dtype))
        return x

    # Execute as one fused op using grouped convolution.
    batch_size = int(batch_size)
    x = x.reshape(1, -1, *x.shape[2:])
    w = w.reshape(-1, in_channels, kh, kw)
    x = conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding,
                        groups=batch_size, flip_weight=flip_weight)
    x = x.reshape(batch_size, -1, *x.shape[2:])
    if noise is not None:
        x = x.add_(noise)
    return x


class SynthesisLayer(torch.nn.Module):
    def __init__(self,
                 in_channels,  # Number of input channels.
                 out_channels,  # Number of output channels.
                 w_dim,  # Intermediate latent (W) dimensionality.
                 resolution,  # Resolution of this layer.
                 kernel_size=3,  # Convolution kernel size.
                 up=1,  # Integer upsampling factor.
                 use_noise=True,  # Enable noise input?
                 activation='lrelu',  # Activation function: 'relu', 'lrelu', etc.
                 resample_filter=[1, 3, 3, 1],  # Low-pass filter to apply when resampling activations.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 channels_last=False,  # Use channels_last format for the weights?
                 ):
        super().__init__()
        self.resolution = resolution
        self.up = up
        self.use_noise = use_noise
        self.activation = activation
        self.conv_clamp = conv_clamp
        self.register_buffer('resample_filter', setup_filter(resample_filter))
        self.padding = kernel_size // 2
        self.act_gain = activation_funcs[activation].def_gain

        self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
        memory_format = torch.channels_last if channels_last else torch.contiguous_format
        self.weight = torch.nn.Parameter(
            torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format))
        if use_noise:
            self.register_buffer('noise_const', torch.randn([resolution, resolution]))
            self.noise_strength = torch.nn.Parameter(torch.zeros([]))
        self.bias = torch.nn.Parameter(torch.zeros([out_channels]))

    def forward(self, x, w, noise_mode='none', fused_modconv=True, gain=1):
        assert noise_mode in ['random', 'const', 'none']
        in_resolution = self.resolution // self.up
        styles = self.affine(w)

        noise = None
        if self.use_noise and noise_mode == 'random':
            noise = torch.randn([x.shape[0], 1, self.resolution, self.resolution],
                                device=x.device) * self.noise_strength
        if self.use_noise and noise_mode == 'const':
            noise = self.noise_const * self.noise_strength

        flip_weight = (self.up == 1)  # slightly faster
        x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up,
                             padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight,
                             fused_modconv=fused_modconv)

        act_gain = self.act_gain * gain
        act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
        x = F.leaky_relu(x, negative_slope=0.2, inplace=False)
        if act_gain != 1:
            x = x * act_gain
        if act_clamp is not None:
            x = x.clamp(-act_clamp, act_clamp)
        return x


class ToRGBLayer(torch.nn.Module):
    def __init__(self, in_channels, out_channels, w_dim, kernel_size=1, conv_clamp=None, channels_last=False):
        super().__init__()
        self.conv_clamp = conv_clamp
        self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
        memory_format = torch.channels_last if channels_last else torch.contiguous_format
        self.weight = torch.nn.Parameter(
            torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format))
        self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
        self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))

    def forward(self, x, w, fused_modconv=True):
        styles = self.affine(w) * self.weight_gain
        x = modulated_conv2d(x=x, weight=self.weight, styles=styles, demodulate=False, fused_modconv=fused_modconv)
        x = bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp)
        return x


class SynthesisForeword(torch.nn.Module):
    def __init__(self,
                 z_dim,  # Output Latent (Z) dimensionality.
                 resolution,  # Resolution of this block.
                 in_channels,
                 img_channels,  # Number of input color channels.
                 architecture='skip',  # Architecture: 'orig', 'skip', 'resnet'.
                 activation='lrelu',  # Activation function: 'relu', 'lrelu', etc.

                 ):
        super().__init__()
        self.in_channels = in_channels
        self.z_dim = z_dim
        self.resolution = resolution
        self.img_channels = img_channels
        self.architecture = architecture

        self.fc = FullyConnectedLayer(self.z_dim, (self.z_dim // 2) * 4 * 4, activation=activation)
        self.conv = SynthesisLayer(self.in_channels, self.in_channels, w_dim=(z_dim // 2) * 3, resolution=4)

        if architecture == 'skip':
            self.torgb = ToRGBLayer(self.in_channels, self.img_channels, kernel_size=1, w_dim=(z_dim // 2) * 3)

    def forward(self, x, ws, feats, img, force_fp32=False):
        _ = force_fp32  # unused
        dtype = torch.float32
        memory_format = torch.contiguous_format

        x_global = x.clone()
        # ToRGB.
        x = self.fc(x)
        x = x.view(-1, self.z_dim // 2, 4, 4)
        x = x.to(dtype=dtype, memory_format=memory_format)

        # Main layers.
        x_skip = feats[4].clone()
        x = x + x_skip

        mod_vector = []
        mod_vector.append(ws[:, 0])
        mod_vector.append(x_global.clone())
        mod_vector = torch.cat(mod_vector, dim=1)

        x = self.conv(x, mod_vector)

        mod_vector = []
        mod_vector.append(ws[:, 2 * 2 - 3])
        mod_vector.append(x_global.clone())
        mod_vector = torch.cat(mod_vector, dim=1)

        if self.architecture == 'skip':
            img = self.torgb(x, mod_vector)
            img = img.to(dtype=torch.float32, memory_format=torch.contiguous_format)

        assert x.dtype == dtype
        return x, img


class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=False),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        res = x * y.expand_as(x)
        return res


class FourierUnit(nn.Module):

    def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
                 spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
        # bn_layer not used
        super(FourierUnit, self).__init__()
        self.groups = groups

        self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
                                          out_channels=out_channels * 2,
                                          kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
        self.relu = torch.nn.ReLU(inplace=False)

        # squeeze and excitation block
        self.use_se = use_se
        if use_se:
            if se_kwargs is None:
                se_kwargs = {}
            self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)

        self.spatial_scale_factor = spatial_scale_factor
        self.spatial_scale_mode = spatial_scale_mode
        self.spectral_pos_encoding = spectral_pos_encoding
        self.ffc3d = ffc3d
        self.fft_norm = fft_norm

    def forward(self, x):
        batch = x.shape[0]

        if self.spatial_scale_factor is not None:
            orig_size = x.shape[-2:]
            x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode,
                              align_corners=False)

        r_size = x.size()
        # (batch, c, h, w/2+1, 2)
        fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
        ffted = fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
        ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
        ffted = ffted.permute(0, 1, 4, 2, 3).contiguous()  # (batch, c, 2, h, w/2+1)
        ffted = ffted.view((batch, -1,) + ffted.size()[3:])

        if self.spectral_pos_encoding:
            height, width = ffted.shape[-2:]
            coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
            coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
            ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)

        if self.use_se:
            ffted = self.se(ffted)

        ffted = self.conv_layer(ffted)  # (batch, c*2, h, w/2+1)
        ffted = self.relu(ffted)

        ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
            0, 1, 3, 4, 2).contiguous()  # (batch,c, t, h, w/2+1, 2)
        ffted = torch.complex(ffted[..., 0], ffted[..., 1])

        ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
        output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)

        if self.spatial_scale_factor is not None:
            output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)

        return output


class SpectralTransform(nn.Module):

    def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
        # bn_layer not used
        super(SpectralTransform, self).__init__()
        self.enable_lfu = enable_lfu
        if stride == 2:
            self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        else:
            self.downsample = nn.Identity()

        self.stride = stride
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels //
                      2, kernel_size=1, groups=groups, bias=False),
            # nn.BatchNorm2d(out_channels // 2),
            nn.ReLU(inplace=True)
        )
        self.fu = FourierUnit(
            out_channels // 2, out_channels // 2, groups, **fu_kwargs)
        if self.enable_lfu:
            self.lfu = FourierUnit(
                out_channels // 2, out_channels // 2, groups)
        self.conv2 = torch.nn.Conv2d(
            out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)

    def forward(self, x):

        x = self.downsample(x)
        x = self.conv1(x)
        output = self.fu(x)

        if self.enable_lfu:
            n, c, h, w = x.shape
            split_no = 2
            split_s = h // split_no
            xs = torch.cat(torch.split(
                x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
            xs = torch.cat(torch.split(xs, split_s, dim=-1),
                           dim=1).contiguous()
            xs = self.lfu(xs)
            xs = xs.repeat(1, 1, split_no, split_no).contiguous()
        else:
            xs = 0

        output = self.conv2(x + output + xs)

        return output


class FFC(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size,
                 ratio_gin, ratio_gout, stride=1, padding=0,
                 dilation=1, groups=1, bias=False, enable_lfu=True,
                 padding_type='reflect', gated=False, **spectral_kwargs):
        super(FFC, self).__init__()

        assert stride == 1 or stride == 2, "Stride should be 1 or 2."
        self.stride = stride

        in_cg = int(in_channels * ratio_gin)
        in_cl = in_channels - in_cg
        out_cg = int(out_channels * ratio_gout)
        out_cl = out_channels - out_cg
        # groups_g = 1 if groups == 1 else int(groups * ratio_gout)
        # groups_l = 1 if groups == 1 else groups - groups_g

        self.ratio_gin = ratio_gin
        self.ratio_gout = ratio_gout
        self.global_in_num = in_cg

        module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
        self.convl2l = module(in_cl, out_cl, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
        self.convl2g = module(in_cl, out_cg, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
        self.convg2l = module(in_cg, out_cl, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
        self.convg2g = module(
            in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)

        self.gated = gated
        module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
        self.gate = module(in_channels, 2, 1)

    def forward(self, x, fname=None):
        x_l, x_g = x if type(x) is tuple else (x, 0)
        out_xl, out_xg = 0, 0

        if self.gated:
            total_input_parts = [x_l]
            if torch.is_tensor(x_g):
                total_input_parts.append(x_g)
            total_input = torch.cat(total_input_parts, dim=1)

            gates = torch.sigmoid(self.gate(total_input))
            g2l_gate, l2g_gate = gates.chunk(2, dim=1)
        else:
            g2l_gate, l2g_gate = 1, 1

        spec_x = self.convg2g(x_g)

        if self.ratio_gout != 1:
            out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
        if self.ratio_gout != 0:
            out_xg = self.convl2g(x_l) * l2g_gate + spec_x

        return out_xl, out_xg


class FFC_BN_ACT(nn.Module):

    def __init__(self, in_channels, out_channels,
                 kernel_size, ratio_gin, ratio_gout,
                 stride=1, padding=0, dilation=1, groups=1, bias=False,
                 norm_layer=nn.SyncBatchNorm, activation_layer=nn.Identity,
                 padding_type='reflect',
                 enable_lfu=True, **kwargs):
        super(FFC_BN_ACT, self).__init__()
        self.ffc = FFC(in_channels, out_channels, kernel_size,
                       ratio_gin, ratio_gout, stride, padding, dilation,
                       groups, bias, enable_lfu, padding_type=padding_type, **kwargs)
        lnorm = nn.Identity if ratio_gout == 1 else norm_layer
        gnorm = nn.Identity if ratio_gout == 0 else norm_layer
        global_channels = int(out_channels * ratio_gout)
        # self.bn_l = lnorm(out_channels - global_channels)
        # self.bn_g = gnorm(global_channels)

        lact = nn.Identity if ratio_gout == 1 else activation_layer
        gact = nn.Identity if ratio_gout == 0 else activation_layer
        self.act_l = lact(inplace=True)
        self.act_g = gact(inplace=True)

    def forward(self, x, fname=None):
        x_l, x_g = self.ffc(x, fname=fname, )
        x_l = self.act_l(x_l)
        x_g = self.act_g(x_g)
        return x_l, x_g


class FFCResnetBlock(nn.Module):
    def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1,
                 spatial_transform_kwargs=None, inline=False, ratio_gin=0.75, ratio_gout=0.75):
        super().__init__()
        self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
                                norm_layer=norm_layer,
                                activation_layer=activation_layer,
                                padding_type=padding_type,
                                ratio_gin=ratio_gin, ratio_gout=ratio_gout)
        self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
                                norm_layer=norm_layer,
                                activation_layer=activation_layer,
                                padding_type=padding_type,
                                ratio_gin=ratio_gin, ratio_gout=ratio_gout)
        self.inline = inline

    def forward(self, x, fname=None):
        if self.inline:
            x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
        else:
            x_l, x_g = x if type(x) is tuple else (x, 0)

        id_l, id_g = x_l, x_g

        x_l, x_g = self.conv1((x_l, x_g), fname=fname)
        x_l, x_g = self.conv2((x_l, x_g), fname=fname)

        x_l, x_g = id_l + x_l, id_g + x_g
        out = x_l, x_g
        if self.inline:
            out = torch.cat(out, dim=1)
        return out


class ConcatTupleLayer(nn.Module):
    def forward(self, x):
        assert isinstance(x, tuple)
        x_l, x_g = x
        assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
        if not torch.is_tensor(x_g):
            return x_l
        return torch.cat(x, dim=1)


class FFCBlock(torch.nn.Module):
    def __init__(self,
                 dim,  # Number of output/input channels.
                 kernel_size,  # Width and height of the convolution kernel.
                 padding,
                 ratio_gin=0.75,
                 ratio_gout=0.75,
                 activation='linear',  # Activation function: 'relu', 'lrelu', etc.
                 ):
        super().__init__()
        if activation == 'linear':
            self.activation = nn.Identity
        else:
            self.activation = nn.ReLU
        self.padding = padding
        self.kernel_size = kernel_size
        self.ffc_block = FFCResnetBlock(dim=dim,
                                        padding_type='reflect',
                                        norm_layer=nn.SyncBatchNorm,
                                        activation_layer=self.activation,
                                        dilation=1,
                                        ratio_gin=ratio_gin,
                                        ratio_gout=ratio_gout)

        self.concat_layer = ConcatTupleLayer()

    def forward(self, gen_ft, mask, fname=None):
        x = gen_ft.float()

        x_l, x_g = x[:, :-self.ffc_block.conv1.ffc.global_in_num], x[:, -self.ffc_block.conv1.ffc.global_in_num:]
        id_l, id_g = x_l, x_g

        x_l, x_g = self.ffc_block((x_l, x_g), fname=fname)
        x_l, x_g = id_l + x_l, id_g + x_g
        x = self.concat_layer((x_l, x_g))

        return x + gen_ft.float()


class FFCSkipLayer(torch.nn.Module):
    def __init__(self,
                 dim,  # Number of input/output channels.
                 kernel_size=3,  # Convolution kernel size.
                 ratio_gin=0.75,
                 ratio_gout=0.75,
                 ):
        super().__init__()
        self.padding = kernel_size // 2

        self.ffc_act = FFCBlock(dim=dim, kernel_size=kernel_size, activation=nn.ReLU,
                                padding=self.padding, ratio_gin=ratio_gin, ratio_gout=ratio_gout)

    def forward(self, gen_ft, mask, fname=None):
        x = self.ffc_act(gen_ft, mask, fname=fname)
        return x


class SynthesisBlock(torch.nn.Module):
    def __init__(self,
                 in_channels,  # Number of input channels, 0 = first block.
                 out_channels,  # Number of output channels.
                 w_dim,  # Intermediate latent (W) dimensionality.
                 resolution,  # Resolution of this block.
                 img_channels,  # Number of output color channels.
                 is_last,  # Is this the last block?
                 architecture='skip',  # Architecture: 'orig', 'skip', 'resnet'.
                 resample_filter=[1, 3, 3, 1],  # Low-pass filter to apply when resampling activations.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 use_fp16=False,  # Use FP16 for this block?
                 fp16_channels_last=False,  # Use channels-last memory format with FP16?
                 **layer_kwargs,  # Arguments for SynthesisLayer.
                 ):
        assert architecture in ['orig', 'skip', 'resnet']
        super().__init__()
        self.in_channels = in_channels
        self.w_dim = w_dim
        self.resolution = resolution
        self.img_channels = img_channels
        self.is_last = is_last
        self.architecture = architecture
        self.use_fp16 = use_fp16
        self.channels_last = (use_fp16 and fp16_channels_last)
        self.register_buffer('resample_filter', setup_filter(resample_filter))
        self.num_conv = 0
        self.num_torgb = 0
        self.res_ffc = {4: 0, 8: 0, 16: 0, 32: 1, 64: 1, 128: 1, 256: 1, 512: 1}

        if in_channels != 0 and resolution >= 8:
            self.ffc_skip = nn.ModuleList()
            for _ in range(self.res_ffc[resolution]):
                self.ffc_skip.append(FFCSkipLayer(dim=out_channels))

        if in_channels == 0:
            self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution]))

        if in_channels != 0:
            self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim * 3, resolution=resolution, up=2,
                                        resample_filter=resample_filter, conv_clamp=conv_clamp,
                                        channels_last=self.channels_last, **layer_kwargs)
            self.num_conv += 1

        self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim * 3, resolution=resolution,
                                    conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
        self.num_conv += 1

        if is_last or architecture == 'skip':
            self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim * 3,
                                    conv_clamp=conv_clamp, channels_last=self.channels_last)
            self.num_torgb += 1

        if in_channels != 0 and architecture == 'resnet':
            self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2,
                                    resample_filter=resample_filter, channels_last=self.channels_last)

    def forward(self, x, mask, feats, img, ws, fname=None, force_fp32=False, fused_modconv=None, **layer_kwargs):
        dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
        dtype = torch.float32
        memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
        if fused_modconv is None:
            fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)

        x = x.to(dtype=dtype, memory_format=memory_format)
        x_skip = feats[self.resolution].clone().to(dtype=dtype, memory_format=memory_format)

        # Main layers.
        if self.in_channels == 0:
            x = self.conv1(x, ws[1], fused_modconv=fused_modconv, **layer_kwargs)
        elif self.architecture == 'resnet':
            y = self.skip(x, gain=np.sqrt(0.5))
            x = self.conv0(x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs)
            if len(self.ffc_skip) > 0:
                mask = F.interpolate(mask, size=x_skip.shape[2:], )
                z = x + x_skip
                for fres in self.ffc_skip:
                    z = fres(z, mask)
                x = x + z
            else:
                x = x + x_skip
            x = self.conv1(x, ws[1].clone(), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
            x = y.add_(x)
        else:
            x = self.conv0(x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs)
            if len(self.ffc_skip) > 0:
                mask = F.interpolate(mask, size=x_skip.shape[2:], )
                z = x + x_skip
                for fres in self.ffc_skip:
                    z = fres(z, mask)
                x = x + z
            else:
                x = x + x_skip
            x = self.conv1(x, ws[1].clone(), fused_modconv=fused_modconv, **layer_kwargs)
        # ToRGB.
        if img is not None:
            img = upsample2d(img, self.resample_filter)
        if self.is_last or self.architecture == 'skip':
            y = self.torgb(x, ws[2].clone(), fused_modconv=fused_modconv)
            y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
            img = img.add_(y) if img is not None else y

        x = x.to(dtype=dtype)
        assert x.dtype == dtype
        assert img is None or img.dtype == torch.float32
        return x, img


class SynthesisNetwork(torch.nn.Module):
    def __init__(self,
                 w_dim,  # Intermediate latent (W) dimensionality.
                 z_dim,  # Output Latent (Z) dimensionality.
                 img_resolution,  # Output image resolution.
                 img_channels,  # Number of color channels.
                 channel_base=16384,  # Overall multiplier for the number of channels.
                 channel_max=512,  # Maximum number of channels in any layer.
                 num_fp16_res=0,  # Use FP16 for the N highest resolutions.
                 **block_kwargs,  # Arguments for SynthesisBlock.
                 ):
        assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
        super().__init__()
        self.w_dim = w_dim
        self.img_resolution = img_resolution
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels = img_channels
        self.block_resolutions = [2 ** i for i in range(3, self.img_resolution_log2 + 1)]
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions}
        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)

        self.foreword = SynthesisForeword(img_channels=img_channels, in_channels=min(channel_base // 4, channel_max),
                                          z_dim=z_dim * 2, resolution=4)

        self.num_ws = self.img_resolution_log2 * 2 - 2
        for res in self.block_resolutions:
            if res // 2 in channels_dict.keys():
                in_channels = channels_dict[res // 2] if res > 4 else 0
            else:
                in_channels = min(channel_base // (res // 2), channel_max)
            out_channels = channels_dict[res]
            use_fp16 = (res >= fp16_resolution)
            use_fp16 = False
            is_last = (res == self.img_resolution)
            block = SynthesisBlock(in_channels, out_channels, w_dim=w_dim, resolution=res,
                                   img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs)
            setattr(self, f'b{res}', block)

    def forward(self, x_global, mask, feats, ws, fname=None, **block_kwargs):

        img = None

        x, img = self.foreword(x_global, ws, feats, img)

        for res in self.block_resolutions:
            block = getattr(self, f'b{res}')
            mod_vector0 = []
            mod_vector0.append(ws[:, int(np.log2(res)) * 2 - 5])
            mod_vector0.append(x_global.clone())
            mod_vector0 = torch.cat(mod_vector0, dim=1)

            mod_vector1 = []
            mod_vector1.append(ws[:, int(np.log2(res)) * 2 - 4])
            mod_vector1.append(x_global.clone())
            mod_vector1 = torch.cat(mod_vector1, dim=1)

            mod_vector_rgb = []
            mod_vector_rgb.append(ws[:, int(np.log2(res)) * 2 - 3])
            mod_vector_rgb.append(x_global.clone())
            mod_vector_rgb = torch.cat(mod_vector_rgb, dim=1)
            x, img = block(x, mask, feats, img, (mod_vector0, mod_vector1, mod_vector_rgb), fname=fname, **block_kwargs)
        return img


class MappingNetwork(torch.nn.Module):
    def __init__(self,
                 z_dim,  # Input latent (Z) dimensionality, 0 = no latent.
                 c_dim,  # Conditioning label (C) dimensionality, 0 = no label.
                 w_dim,  # Intermediate latent (W) dimensionality.
                 num_ws,  # Number of intermediate latents to output, None = do not broadcast.
                 num_layers=8,  # Number of mapping layers.
                 embed_features=None,  # Label embedding dimensionality, None = same as w_dim.
                 layer_features=None,  # Number of intermediate features in the mapping layers, None = same as w_dim.
                 activation='lrelu',  # Activation function: 'relu', 'lrelu', etc.
                 lr_multiplier=0.01,  # Learning rate multiplier for the mapping layers.
                 w_avg_beta=0.995,  # Decay for tracking the moving average of W during training, None = do not track.
                 ):
        super().__init__()
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.num_ws = num_ws
        self.num_layers = num_layers
        self.w_avg_beta = w_avg_beta

        if embed_features is None:
            embed_features = w_dim
        if c_dim == 0:
            embed_features = 0
        if layer_features is None:
            layer_features = w_dim
        features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]

        if c_dim > 0:
            self.embed = FullyConnectedLayer(c_dim, embed_features)
        for idx in range(num_layers):
            in_features = features_list[idx]
            out_features = features_list[idx + 1]
            layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier)
            setattr(self, f'fc{idx}', layer)

        if num_ws is not None and w_avg_beta is not None:
            self.register_buffer('w_avg', torch.zeros([w_dim]))

    def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False):
        # Embed, normalize, and concat inputs.
        x = None
        with torch.autograd.profiler.record_function('input'):
            if self.z_dim > 0:
                x = normalize_2nd_moment(z.to(torch.float32))
            if self.c_dim > 0:
                y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
                x = torch.cat([x, y], dim=1) if x is not None else y

        # Main layers.
        for idx in range(self.num_layers):
            layer = getattr(self, f'fc{idx}')
            x = layer(x)

        # Update moving average of W.
        if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
            with torch.autograd.profiler.record_function('update_w_avg'):
                self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))

        # Broadcast.
        if self.num_ws is not None:
            with torch.autograd.profiler.record_function('broadcast'):
                x = x.unsqueeze(1).repeat([1, self.num_ws, 1])

        # Apply truncation.
        if truncation_psi != 1:
            with torch.autograd.profiler.record_function('truncate'):
                assert self.w_avg_beta is not None
                if self.num_ws is None or truncation_cutoff is None:
                    x = self.w_avg.lerp(x, truncation_psi)
                else:
                    x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
        return x


class Generator(torch.nn.Module):
    def __init__(self,
                 z_dim,  # Input latent (Z) dimensionality.
                 c_dim,  # Conditioning label (C) dimensionality.
                 w_dim,  # Intermediate latent (W) dimensionality.
                 img_resolution,  # Output resolution.
                 img_channels,  # Number of output color channels.
                 encoder_kwargs={},  # Arguments for EncoderNetwork.
                 mapping_kwargs={},  # Arguments for MappingNetwork.
                 synthesis_kwargs={},  # Arguments for SynthesisNetwork.
                 ):
        super().__init__()
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.img_resolution = img_resolution
        self.img_channels = img_channels
        self.encoder = EncoderNetwork(c_dim=c_dim, z_dim=z_dim, img_resolution=img_resolution,
                                      img_channels=img_channels, **encoder_kwargs)
        self.synthesis = SynthesisNetwork(z_dim=z_dim, w_dim=w_dim, img_resolution=img_resolution,
                                          img_channels=img_channels, **synthesis_kwargs)
        self.num_ws = self.synthesis.num_ws
        self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)

    def forward(self, img, c, fname=None, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs):
        mask = img[:, -1].unsqueeze(1)
        x_global, z, feats = self.encoder(img, c)
        ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff)
        img = self.synthesis(x_global, mask, feats, ws, fname=fname, **synthesis_kwargs)
        return img


FCF_MODEL_URL = os.environ.get(
    "FCF_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_fcf/places_512_G.pth",
)


class FcF(InpaintModel):
    min_size = 512
    pad_mod = 512
    pad_to_square = True

    def init_model(self, device, **kwargs):
        seed = 0
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

        kwargs = {'channel_base': 1 * 32768, 'channel_max': 512, 'num_fp16_res': 4, 'conv_clamp': 256}
        G = Generator(z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3,
                      synthesis_kwargs=kwargs, encoder_kwargs=kwargs, mapping_kwargs={'num_layers': 2})
        self.model = load_model(G, FCF_MODEL_URL, device)
        self.label = torch.zeros([1, self.model.c_dim], device=device)

    @staticmethod
    def is_downloaded() -> bool:
        return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL))

    @torch.no_grad()
    def __call__(self, image, mask, config: Config):
        """
        images: [H, W, C] RGB, not normalized
        masks: [H, W]
        return: BGR IMAGE
        """
        if image.shape[0] == 512 and image.shape[1] == 512:
            return self._pad_forward(image, mask, config)

        boxes = boxes_from_mask(mask)
        crop_result = []
        config.hd_strategy_crop_margin = 128
        for box in boxes:
            crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
            origin_size = crop_image.shape[:2]
            resize_image = resize_max_size(crop_image, size_limit=512)
            resize_mask = resize_max_size(crop_mask, size_limit=512)
            inpaint_result = self._pad_forward(resize_image, resize_mask, config)

            # only paste masked area result
            inpaint_result = cv2.resize(inpaint_result, (origin_size[1], origin_size[0]), interpolation=cv2.INTER_CUBIC)

            original_pixel_indices = crop_mask < 127
            inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][original_pixel_indices]

            crop_result.append((inpaint_result, crop_box))

        inpaint_result = image[:, :, ::-1]
        for crop_image, crop_box in crop_result:
            x1, y1, x2, y2 = crop_box
            inpaint_result[y1:y2, x1:x2, :] = crop_image

        return inpaint_result

    def forward(self, image, mask, config: Config):
        """Input images and output images have same size
        images: [H, W, C] RGB
        masks: [H, W] mask area == 255
        return: BGR IMAGE
        """

        image = norm_img(image)  # [0, 1]
        image = image * 2 - 1  # [0, 1] -> [-1, 1]
        mask = (mask > 120) * 255
        mask = norm_img(mask)

        image = torch.from_numpy(image).unsqueeze(0).to(self.device)
        mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)

        erased_img = image * (1 - mask)
        input_image = torch.cat([0.5 - mask, erased_img], dim=1)

        output = self.model(input_image, self.label, truncation_psi=0.1, noise_mode='none')
        output = (output.permute(0, 2, 3, 1) * 127.5 + 127.5).round().clamp(0, 255).to(torch.uint8)
        output = output[0].cpu().numpy()
        cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
        return cur_res